header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 18 - 18
10 Feb 2023
Foster A Boot W Stenger V D'Este M Jaiprakash A Crawford R Schuetz M Eglin D Zeiter S Richards R Moriarty T
Full Access

Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability.

In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant Staphylococcus aureus (MRSA) ODRI in

sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined in vitro. Swiss alpine sheep underwent a single-stage revision of a tibial intramedullary nail with MRSA infection. Local gentamicin and vancomycin therapy was delivered via hydrogel or PMMA (n = 5 per group), in conjunction with systemic antibiotic therapy. In vivo observations included: local antibiotic tissue concentration, renal and liver function tests, and quantitative microbiology on tissues and hardware post-mortem.

There was a nonsignificant reduction in biofilm with an increasing antibiotic concentration in vitro (p = 0.12), confirming the antibiotic tolerance of the MRSA biofilm. In the in vivo study, four out of five sheep from each treatment group were culture negative. Antibiotic delivery via hydrogel resulted in 10–100 times greater local concentrations for the first 2–3 days compared with PMMA and were comparable thereafter. Systemic concentrations of gentamicin were minimal or undetectable in both groups, while renal and liver function tests were within normal limits.

This study shows that a single-stage revision with hydrogel or PMMA is equally effective, although the hydrogel offers certain practical benefits over PMMA, which make it an attractive proposition for clinical use.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 75 - 75
1 Dec 2019
Boot W Foster A Schmid T D'este M Zeiter S Eglin D Richards G Moriarty F
Full Access

Aim

Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). A large animal model of a two-stage revision to treat MRSA implant-associated osteomyelitis has been developed to assess novel treatments. A bioresorbable, thermo-responsive hyaluronan hydrogel (THH) loaded with antibiotics has been developed and our aim was to investigate it´s in vivo efficacy as a local antibiotic carrier compared to the current standard of care i.e. antibiotic-loaded polymethylmethacrylate (PMMA) bone cement.

Method

12 female, 2 to 4 year old, Swiss Alpine Sheep were inoculated with MRSA at the time of intramedullary nail insertion in the tibia to develop chronic osteomyelitis. After 8 weeks sheep received a 2-stage revision protocol, with local and systemic antibiotics. Group 1 received the gold standard clinical treatment: systemic vancomycin (2 weeks) followed by rifampicin plus trimethoprim/sulfamethoxazole (4 weeks), and local gentamicin/vancomycin via PMMA. Group 2 received local gentamicin/vancomycin delivered via THH at both revision surgeries and identical systemic therapy to group 1. Sheep were euthanized 2 weeks following completion of antibiotic therapy. At euthanasia, soft tissue, bone, and sonicate fluid from the hardware was collected for quantitative bacteriology.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 71 - 71
1 Dec 2018
van Dijk B Boot W Fluit AC Kusters JG Vogely HC van der Wal BCH Weinans HH Boel CHE
Full Access

Aim

Here we describe a cohort study to determine the performance of a commercially available Fluorescence In Situ Hybridization (FISH)-kit on samples of 65 consecutive patients suspected of orthopedic implant associated infections (IAI). Culture is routinely used and has a high specificity and sensitivity but requires days to more than a week for slow growing bacteria. FISH results are available within 45–60 minutes and thus specific treatment can start immediately. In addition, previous antibiotic therapy may hinder culture while bacteria may still be detected by FISH.

Method

The hemoFISH-kit from Miacom diagnostics (Dusseldorf, Germany) was used on a total of 82 joint aspirates, sonication fluids and tissue samples of 65 consecutive patients to detect and identify possible microorganisms. This FISH-kit contains a universal 16S rRNA probe and species-specific probes for bacteria commonly encountered in blood infections. FISH and culture were compared to the clinical definition of IAI. These definitions were based on the criteria described by Pro-Implant Foundation criteria for IAI after fracture fixation or prosthetic joint infection. If no criteria were described in the literature for a specific IAI then MSIS criteria were used.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 99 - 99
1 Dec 2017
Boot W D'Este M Schmid T Zeiter S Richards R Eglin D Moriarty T
Full Access

Aim

The treatment of chronic orthopedic device-related infection (ODRI) often requires multiple surgeries and prolonged antibiotic therapy. In a two-stage exchange procedure, the treatment protocol includes device removal and placement of an antibiotic-loaded bone cement spacer to achieve high local antibiotic concentrations. At the second stage, further surgery is required to remove the spacer and replace it with the definitive device. We have recently developed a thermo-responsive hyaluronan hydrogel (THH) that may be loaded with antibiotics and used as delivery system. Since the material is bio-resorbable, it does not require surgical removal and may therefore be suitable for use as treatment strategy in a single-stage exchange.

This aim of this study was to evaluate gentamicin sulphate (Genta)-loaded THH (THH-Genta) for treating a chronic Staphylococcus aureus ODRI in sheep using a single-stage procedure.

Methods

Twelve Swiss-alpine sheep received an IM tibia nail and an inoculation of a gentamicin-sensitive clinical strain of Staphylococcus aureus. After letting a chronic infection develop for 8 weeks, a revision procedure was performed: the implant was removed, the IM canal debrided and biopsies were taken for culture. The IM canal was then filled with 25ml THH-Genta (1% Genta) or left empty (control group) prior to the implantation of a sterile nail. An ultrafiltration probe was placed within the IM cavity to collect extracellular fluid and determine local antibiotic levels for 10 days. Both groups received systemic amoxicillin and clavulanic acid for 2 weeks, followed by 2 weeks without treatment for antibiotic washout. At euthanasia, IM nail, bone marrow, bone and tissue samples were harvested for quantitative bacteriology.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2015
Boot W Vogely H Nikkels P Dhert W Gawlitta D
Full Access

Currently, no clinical options are available to prevent infections on uncemented orthopedic implants. Therefore we investigated the efficacy of DAC-hydrogel (disposable antibacterial coating(1), Novagenit, Italy) as carrier for various agents to prevent infections in an in vivo implant-model.

Titanium rods were implanted in the left tibiae in New Zealand White rabbits. Prior to implantation, the implant bed was contaminated with 10∧5 colony forming units S. aureus.

In the experimental groups, the hydrogel was loaded prior to be coated on the rods with: 2%(w/v) vancomycin (Van2 group, N=6), 5%(w/v) vancomycin (Van5 group, N=6), 10%(w/v) bioactive glass (BonAlive, Finland) (BAG group, N=6), which is antibacterial(2) and osteoconductive(3), or 0.5%(w/v) N-acetyl cysteine (NAC group, N=6), which inhibits bacterial growth and decreases biofilm formation(4). In the control group, empty hydrogel was applied (Gel group, N=12)

Blood values were measured weekly. Following explantation on day 28, the anterior tibia was processed for bacterial culture. The posterior tibia and rod were used for measuring bone-implant contact using micro-CT and for histopathology.

Results of the experimental groups were compared to the Gel group results. The blood values in the Van2 and Van5 groups were lower on day 7. Moreover, culture results demonstrated less animals with an infection in both groups at day 28. In accordance, these groups showed lower grades for infection. Further, the Van2 group demonstrated more bone-implant contact. These results suggest that infection was reduced in the Van2 and Van5 groups. In contrast, blood values, histological grades, and bone-implant contact of the BAG and NAC groups were comparable with the Gel group. These results suggest that infection was not prevented in the BAG and NAC groups.

Local application of vancomycin-loaded DAC-hydrogel successfully reduced implant-related infections. Loading of the hydrogel with BAG or NAC did not prevent infection. It is possible that BAG in powder form, as used in the present study, dissolved before the antibacterial effect could take place. Instead, BAG granules may be a viable alternative. Next, it is possible that the NAC concentration was too low to prevent infections in an in vivo environment, although this concentration was proven effective in vitro for its antibacterial properties.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 65 - 65
1 Dec 2015
Boot W Gawlitta D Van Genderen E Kusters J Ekkelenkamp M Fluit A Vlooswijk J Dhert W Vogely H
Full Access

Correct diagnosis of infection is crucial for an adequate treatment of orthopedic implant-related infections. In the orthopedic field, infections can be difficult to diagnose(1). As a consequence, patients may suffer from an undiagnosed and untreated implant-related infection.

To solve this problem, we are searching for a diagnostic method to detect these so-called low-grade infections. The technique fluorescence in situ hybridization (FISH) can detect slow-growing and even dead bacteria. Further, as FISH results are available within an hour after tissue collection it is an ideal candidate for diagnostic purposes.

AIM: to evaluate the FISH technique for its potential to detect and identify orthopedic infections.

Sonication fluid (SF) was collected by sonicating retrieved implants(2) from 62 patients. All samples were subjected to bacterial culture for clinical diagnostics. In addition, a commercially available FISH kit (miacom diagnostics, Germany), specifically designed for blood analysis (hemoFISH Masterpanel), was used. The kit contained 16S rRNA probes (positive control), non-sense probes (negative control), probes for Staphylococcus spp., Staphylococcus aureus, Streptococcus spp., Streptococcus pneumoniae, Streptococcus agalactiae, Enterococcus faecium, Enterococcus faecalis, Enterobacteriaceae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acetinobacter spp., and Stenotrophomonas maltophilia. All FISH analyses were performed according to the protocol provided with the kit.

Culture and FISH results were compared, considering culture as the gold standard. Culture resulted in 27 positive and 35 negative samples. Comparing FISH (16S rRNA probe) with culture, 24 samples tested true-positive and 32 samples true-negative. Furthermore, 3 samples tested false-negative and 3 samples false-positive.

The species cultured with the highest incidence were Propionibacterium acnes and Staphylococcus epidermidis, both from 8 SF samples. As the kit did not contain a probe for Propionibacterium acnes, these strains were only detected by the 16S rRNA probe. In addition, the latter samples tested positive with the Staphylococcus spp. probe.

Interestingly, 3 samples tested positive with FISH that were culture negative. This result could indicate a higher sensitivity for detection of bacteria with FISH than with culture.

Before FISH can be used for diagnostic purposes, the technique needs to be optimized to prevent false-negative results, for use on other patient materials and for detection of bacterial strains relevant for the orthopedic field like Propionibacterium acnes.

In conclusion, FISH holds promise to be used as a diagnostic tool for identifying orthopedic infections.