header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

LOCAL PROPHYLAXIS OF IMPLANT-RELATED INFECTIONS USING A HYDROGEL AS CARRIER

European Bone And Joint Infection Society (EBJIS) 34th Annual Meeting: PART 2



Abstract

Currently, no clinical options are available to prevent infections on uncemented orthopedic implants. Therefore we investigated the efficacy of DAC-hydrogel (disposable antibacterial coating(1), Novagenit, Italy) as carrier for various agents to prevent infections in an in vivo implant-model.

Titanium rods were implanted in the left tibiae in New Zealand White rabbits. Prior to implantation, the implant bed was contaminated with 10∧5 colony forming units S. aureus.

In the experimental groups, the hydrogel was loaded prior to be coated on the rods with: 2%(w/v) vancomycin (Van2 group, N=6), 5%(w/v) vancomycin (Van5 group, N=6), 10%(w/v) bioactive glass (BonAlive, Finland) (BAG group, N=6), which is antibacterial(2) and osteoconductive(3), or 0.5%(w/v) N-acetyl cysteine (NAC group, N=6), which inhibits bacterial growth and decreases biofilm formation(4). In the control group, empty hydrogel was applied (Gel group, N=12)

Blood values were measured weekly. Following explantation on day 28, the anterior tibia was processed for bacterial culture. The posterior tibia and rod were used for measuring bone-implant contact using micro-CT and for histopathology.

Results of the experimental groups were compared to the Gel group results. The blood values in the Van2 and Van5 groups were lower on day 7. Moreover, culture results demonstrated less animals with an infection in both groups at day 28. In accordance, these groups showed lower grades for infection. Further, the Van2 group demonstrated more bone-implant contact. These results suggest that infection was reduced in the Van2 and Van5 groups. In contrast, blood values, histological grades, and bone-implant contact of the BAG and NAC groups were comparable with the Gel group. These results suggest that infection was not prevented in the BAG and NAC groups.

Local application of vancomycin-loaded DAC-hydrogel successfully reduced implant-related infections. Loading of the hydrogel with BAG or NAC did not prevent infection. It is possible that BAG in powder form, as used in the present study, dissolved before the antibacterial effect could take place. Instead, BAG granules may be a viable alternative. Next, it is possible that the NAC concentration was too low to prevent infections in an in vivo environment, although this concentration was proven effective in vitro for its antibacterial properties.


E-mail: