header advert
Results 1 - 29 of 29
Results per page:
Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 23 - 23
11 Apr 2023
Keen R Liu J Williams A Wood S
Full Access

X-Linked Hypophosphataemia (XLH) is a rare, progressive, hereditary phosphate-wasting disorder characterised by excessive activity of fibroblast growth factor 23. The International XLH Registry was established to provide information on the natural history of XLH and impact of treatment on patient outcomes. The cross-sectional orthopaedic data presented are from the first interim analysis.

The XLH Registry (NCT03193476) was initiated in August 2017, aims to recruit 1,200 children and adults with XLH, and will run for 10 years. At the time of analysis (Last Patient In: 30/11/2020; Database Lock: 29/03/2021) 579 subjects diagnosed with XLH were enrolled from 81 hospital sites in 16 countries (360 (62.2%) children, 217 (37.5%) adults, and 2 subjects of unknown age).

Of subjects with retrospective clinical data available, skeletal deficits were the most frequently self-reported clinical problems for children (223/239, 93.3%) and adults (79/110, 71.8%). Retrospective fracture data were available for 183 subjects (72 children, 111 adults); 50 had a fracture (9 children, 41 adults). In children, fractures tended to occur in tibia/fibula and/or wrist; only adults reported large bone fractures. Joint conditions were noted for 46 subjects (6 children, 40 adults). For adults reporting osteoarthritis, knees (60%), hips (42.5%), and shoulders (22.5%) were the most frequently affected joints. Retrospective orthopaedic surgery data were collected for 151 subjects (52 children, 99 adults). Osteotomy was the most frequent surgery reported (n=108); joint replacements were recorded for adults only.

This is the largest set of orthopaedic data from XLH subjects collected to date. Longitudinal information collected during the 10-year Registry duration will generate real-world evidence which will help to inform clinical practice.

Authors acknowledge the contribution of all International XLH Registry Steering Committee members.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 9 - 9
4 Apr 2023
Fridberg M Annadatha S Hua Q Jensen T Liu J Kold S Rahbek O Shen M Ghaffari A
Full Access

To detect early signs of infection infrared thermography has been suggested to provide quantitative information. Our vision is to invent a pin site infection thermographic surveillance tool for patients at home. A preliminary step to this goal is the aim of this study, to automate the process of locating the pin and detecting the pin sites in thermal images efficiently, exactly, and reliably for extracting pin site temperatures.

A total of 1708 pin sites was investigated with Thermography and augmented by 9 different methods in to totally 10.409 images. The dataset was divided into a training set (n=8325), a validation set (n=1040), and a test set (n=1044) of images. The Pin Detection Model (PDM) was developed as follows: A You Only Look Once (YOLOv5) based object detection model with a Complete Detection Intersection over Union (CDIoU), it was pre-trained and finetuned by the through transfer learning. The basic performance of the YOLOv5 with CDIoU model was compared with other conventional models (FCOS and YOLOv4) for deep and transition learning to improve performance and precision. Maximum Temperature Extraction (MTE) Based on Region of Interest (ROI) for all pin sites was generated by the model. Inference of MTE using PDM with infected and un-infected datasets was investigated.

An automatic tool that can identify and annotate pin sites on conventional images using bounding boxes was established. The bounding box was transferred to the infrared image. The PMD algorithm was built on YOLOv5 with CDIoU and has a precision of 0.976. The model offers the pin site detection in 1.8 milliseconds. The thermal data from ROI at the pin site was automatically extracted.

These results enable automatic pin site annotation on thermography. The model tracks the correlation between temperature and infection from the detected pin sites and demonstrates it is a promising tool for automatic pin site detection and maximum temperature extraction for further infection studies. Our work for automatic pin site annotation on thermography paves the way for future research on infection assessment using thermography.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 106 - 106
4 Apr 2023
Ding Y Luo W Chen Z Guo P Lei B Zhang Q Chen Z Fu Y Li C Ma T Liu J
Full Access

Quantitative ultrasound (QUS) is a promising tool to estimate bone structure characteristics and predict fragile fracture. The aim of this pilot cross-sectional study was to evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragile fractures retrospectively in postmenopausal women.

Methods

RF signal and speed of sound (SOS) were obtained using an axial transmission QUS at one‐third distal radius for 246 postmenopausal women. Based on the involved RF signal, we conducted a MResNet, which combines multi-channel training with original ResNet, to classify the high risk of fragility fractures patients from all subjects. The bone mineral density (BMD) at lumber, hip and femoral neck acquired with DXA was recorded on the same day. The fracture history of all subjects in adulthood were collected. To assess the ability of the different methods in the discrimination of fragile fracture, the odds ratios (OR) calculated using binomial logistic regression analysis and the area under the receiver operator characteristic curves (AUC) were analyzed.

Results

Among the 246 postmenopausal women, 170 belonged to the non-fracture group, 50 to the vertebral group, and 26 to the non-vertebral fracture group. MResNet was discriminant for all fragile fractures (OR = 2.64; AUC = 0.74), for Vertebral fracture (OR = 3.02; AUC = 0.77), for non-vertebral fracture (OR = 2.01; AUC = 0.69). MResNet showed comparable performance to that of BMD of hip and lumbar with all types of fractures, and significantly better performance than SOS all types of fractures.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 140 - 147
1 Feb 2023
Fu Z Zhang Z Deng S Yang J Li B Zhang H Liu J

Aims

Eccentric reductions may become concentric through femoral head ‘docking’ (FHD) following closed reduction (CR) for developmental dysplasia of the hip (DDH). However, changes regarding position and morphology through FHD are not well understood. We aimed to assess these changes using serial MRI.

Methods

We reviewed 103 patients with DDH successfully treated by CR and spica casting in a single institution between January 2016 and December 2020. MRI was routinely performed immediately after CR and at the end of each cast. Using MRI, we described the labrum-acetabular cartilage complex (LACC) morphology, and measured the femoral head to triradiate cartilage distance (FTD) on the midcoronal section. A total of 13 hips with initial complete reduction (i.e. FTD < 1 mm) and ten hips with incomplete MRI follow-up were excluded. A total of 86 patients (92 hips) with a FTD > 1 mm were included in the analysis.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 214 - 225
20 Apr 2022
Hao X Zhang J Shang X Sun K Zhou J Liu J Chi R Xu T

Aims

Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive.

Methods

A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 486 - 494
4 Apr 2022
Liu W Sun Z Xiong H Liu J Lu J Cai B Wang W Fan C

Aims

The aim of this study was to develop and internally validate a prognostic nomogram to predict the probability of gaining a functional range of motion (ROM ≥ 120°) after open arthrolysis of the elbow in patients with post-traumatic stiffness of the elbow.

Methods

We developed the Shanghai Prediction Model for Elbow Stiffness Surgical Outcome (SPESSO) based on a dataset of 551 patients who underwent open arthrolysis of the elbow in four institutions. Demographic and clinical characteristics were collected from medical records. The least absolute shrinkage and selection operator regression model was used to optimize the selection of relevant features. Multivariable logistic regression analysis was used to build the SPESSO. Its prediction performance was evaluated using the concordance index (C-index) and a calibration graph. Internal validation was conducted using bootstrapping validation.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1358 - 1366
2 Aug 2021
Wei C Quan T Wang KY Gu A Fassihi SC Kahlenberg CA Malahias M Liu J Thakkar S Gonzalez Della Valle A Sculco PK

Aims

This study used an artificial neural network (ANN) model to determine the most important pre- and perioperative variables to predict same-day discharge in patients undergoing total knee arthroplasty (TKA).

Methods

Data for this study were collected from the National Surgery Quality Improvement Program (NSQIP) database from the year 2018. Patients who received a primary, elective, unilateral TKA with a diagnosis of primary osteoarthritis were included. Demographic, preoperative, and intraoperative variables were analyzed. The ANN model was compared to a logistic regression model, which is a conventional machine-learning algorithm. Variables collected from 28,742 patients were analyzed based on their contribution to hospital length of stay.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1311 - 1318
3 Oct 2020
Huang Y Gao Y Li Y Ding L Liu J Qi X

Aims

Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis.

Methods

A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 41 - 41
1 Aug 2020
Zhang X Liu J Li J Chen X Qiao Z Xu J Xiao F Cui P
Full Access

Osteosarcoma (OS) is the most prevalent bone tumor in children and young adults. Most tumors arise from the metaphysis of the long bones and easily metastasize to the lungs. Current therapeutic strategies of osteosarcoma are routinely surgical resection and chemotherapy, which are limited to the patients suffering from metastatic recurrence. Therefore, to investigate molecular mechanisms that contribute to osteosarcoma progression is very important and may shed light on targeted therapeutic approach to improve the survival of patients with this disease. Several miRNAs have been found expressed differentially in osteosarcoma (OS), In this study, we found that miR-144 significantly suppresses osteosarcoma cell proliferation, migration andinvasion ability in vitro, and inhibited tumor growth and metastasisin vivo. The function and molecular mechanism of miR-144 in Osteosarcoma was further investigated.

Tissue samples from fifty-one osteosarcoma patients were obtained from Shanghai Ninth People's Hospital. The in vitro function of miR-144 in Osteosarcoma was investigated by cell viability assay, wound healing assay, invasion assay, the molecular mechanism was identified by Biotin-coupled miRNA capture, Dual-luciferase reporter assays, etc. the in vivo function of miR-144 in osteosarcoma was confirmed by osteosarcoma animal model and miR-144−/− zebrafish model.

Mechanically, we demonstrated that Ras homolog family member A (RhoA) and its pivotal downstream effector Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) were both identified as direct targets of miR-144. Moreover, the negative co-relation between downregulated miR-144 and upregulated ROCK1/RhoA was verified both in the osteosarcoma cell lines and clinical patients' specimens. Functionally, RhoA with or without ROCK1 co-overexpression resulted a rescue phenotype on the miR-144 inhibited cell growth, migration and invasion abilities, while individual overexpression of ROCK1 had no statistical significance compared with control in miR-144 transfected SAOS2 and U2-OS cells.

This study demonstrates that miR-144 inhibited tumor growth and metastasis in osteosarcoma via dual-suppressing of RhoA and ROCK1, which could be a new therapeutic approach for the treatment ofosteosarcoma.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 71 - 77
1 Jul 2020
Gonzalez Della Valle A Shanaghan KA Nguyen J Liu J Memtsoudis S Sharrock NE Salvati EA

Aims

We studied the safety and efficacy of multimodal thromboprophylaxis in patients with a history of venous thromboembolism (VTE) who undergo total hip arthroplasty (THA) within the first 120 postoperative days, and the mortality during the first year. Multimodal prophylaxis includes discontinuation of procoagulant medications, VTE risk stratification, regional anaesthesia, an intravenous bolus of unfractionated heparin prior to femoral preparation, rapid mobilization, the use of pneumatic compression devices, and chemoprophylaxis tailored to the patient’s risk of VTE.

Methods

Between 2004 to 2018, 257 patients with a proven history of VTE underwent 277 primary elective THA procedures by two surgeons at a single institution. The patients had a history of deep vein thrombosis (DVT) (186, 67%), pulmonary embolism (PE) (43, 15.5%), or both (48, 17.5%). Chemoprophylaxis included aspirin (38 patients), anticoagulation (215 patients), or a combination of aspirin and anticoagulation (24 patients). A total of 50 patients (18%) had a vena cava filter in situ at the time of surgery. Patients were followed for 120 days to record complications, and for one year to record mortality.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 485 - 494
1 Apr 2020
Gu A Malahias M Selemon NA Wei C Gerhard EF Cohen JS Fassihi SC Stake S Bernstein SL Chen AZ Sculco TP Cross MB Liu J Ast MP Sculco PK

Aims

The aim of this study was to determine the impact of the severity of anaemia on postoperative complications following total hip arthroplasty (THA) and total knee arthroplasty (TKA).

Methods

A retrospective cohort study was conducted using the American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database. All patients who underwent primary TKA or THA between January 2012 and December 2017 were identified and stratified based upon hematocrit level. In this analysis, we defined anaemia as packed cell volume (Hct) < 36% for women and < 39% for men, and further stratified anaemia as mild anaemia (Hct 33% to 36% for women, Hct 33% to 39% for men), and moderate to severe (Hct < 33% for both men and women). Univariate and multivariate analyses were used to evaluate the incidence of multiple adverse events within 30 days of arthroplasty.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 405 - 413
1 Aug 2019
Huang J Bao X Xia W Zhu L Zhang J Ma J Jiang N Yang J Chen Q Jing T Liu J Ma D Xu G

Objectives

X-linked hypophosphataemic rickets (XLHR) is a disease of impaired bone mineralization characterized by hypophosphataemia caused by renal phosphate wasting. The main clinical manifestations of the disorder are O-shaped legs, X-shaped legs, delayed growth, and bone pain. XLHR is the most common inheritable form of rickets, with an incidence of 1/20 000 in humans. It accounts for approximately 80% of familial cases of hypophosphataemia and serves as the prototype of defective tubular phosphate (PO43+) transport, due to extra renal defects resulting in unregulated FGF23 activity. XLHR is caused by loss-of-function mutations in the PHEX gene. The aim of this research was to identify the genetic defect responsible for familial hypophosphataemic rickets in a four-generation Chinese Han pedigree and to analyze the function of this mutation.

Methods

The genome DNA samples of all members in the pedigree were extracted from whole blood. We sequenced all exons of the PHEX and FGF23 genes, as well as the adjacent splice site sequence with Sanger sequencing. Next, we analyzed the de novo mutation c.1692 del A of the PHEX gene with an online digital service and investigated the mutant PHEX with SWISS-MODEL, immunofluorescence, and protein stability detection.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 119 - 119
1 Apr 2019
Cabarcas B Cvetanovich G Orias AE Inoue N Gowd A Liu J Verma N
Full Access

Background

Accurate placement of the glenoid component in total shoulder arthroplasty (TSA) is critical to optimize implant longevity. Commercially available patient-specific instrumentation systems can improve implant placement, but may involve considerable expense and production delays of up to six weeks. The purpose of this study was to develop a novel technique for in-house production of 3D-printed, patient-specific glenoid guides, and compare the accuracy of glenoid guidepin placement between the patient-specific guide and a standard guide using a cadaveric model.

Methods

Twenty cadaveric shoulder specimens were randomized to receive glenoid guidepin placement via standard TSA guide (Wright Medical, Memphis, TN) or patient-specific guide. Three-dimensional scapular models were reconstructed from CT scans with Mimics 20.0 imaging software (Materialise NV, Leuven, Belgium). A pre-surgical plan was created for all specimens for the central glenoid guidepin of 0º version and inclination angles. Central pin entry and exit points were also calculated. Patient-specific guides were constructed to achieve the planned pin trajectory in Rhino3D software (Robert McNeel & Associates, Seattle, WA). Guides were 3D-printed on a Form2 printer with Formlabs Dental SG Resin (Formlabs, Somerville, MA). Glenoid labrum and cartilage were removed with preservation of other soft tissues in all specimens to mimic intraoperative TSA conditions. A fellowship-trained, board-eligible orthopaedic surgeon placed a 2.5 mm diameter titanium guidepin into each glenoid using the assigned guide for each specimen. After pin placement, repeat CT scans were performed, and a blinded measurer used superimposed 3D scapular reconstructions to calculate deviation from the pre-surgical plan in version and inclination angles, dot product angle, and guide pin entry and exit points. Student's t tests were performed to detect differences between pin placements for the two groups.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 340 - 347
1 Mar 2019
Elkassabany NM Cai LF Badiola I Kase B Liu J Hughes C Israelite CL Nelson CL

Aims

Adductor canal block (ACB) has emerged as an alternative to femoral nerve block (FNB) for analgesia after total knee arthroplasty (TKA). The optimal duration of maintenance of the ACB is still questionable. The purpose of this study was to compare the analgesic benefits and physiotherapy (PT) outcomes of single-shot ACB to two different regimens of infusion of the continuous ACB, 24-hour and 48-hour infusion.

Patients and Methods

This was a prospective, randomized, unblinded study. A total of 159 American Society of Anesthesiologists (ASA) physical status I to III patients scheduled for primary TKA were randomized to one of three study groups. Three patients did not complete the study, leaving 156 patients for final analysis. Group A (n = 53) was the single-shot group (16 female patients and 37 male patients with a mean age of 63.9 years (sd 9.6)), group B (n = 51) was the 24-hour infusion group (22 female patients and 29 male patients with a mean age of 66.5 years (sd 8.5)), and group C (n = 52) was the 48-hour infusion group (18 female patients and 34 male patients with a mean age of 62.2 years (sd 8.7)). Pain scores, opioid requirements, PT test results, and patient-reported outcome instruments were compared between the three groups.


Objectives

Tranexamic acid (TXA), an inhibitor of fibrinolysis blocking the lysine-binding site of plasminogen to fibrin, has been reported to reduce intraoperative and postoperative blood loss in patients undergoing primary total hip arthroplasty (PTHA) both with and without cement. Both intravenous (IV) and topical (TOP) administration of TXA can effectively reduce blood loss in THA without increasing risk of deep venous thrombosis (DVT). However, there have been few reports investigating the combination of intravenous and topical administration of TXA in bilateral cementless PTHA. We investigated the effects of combined intravenous and topical administration of TXA on postoperative blood loss, drainage volume, and perioperative complications in patients with bilateral simultaneous cementless PTHA for hip osteoarthritis.

Patients and methods

We retrospectively reviewed the demographic and clinical data of 41 patients who underwent bilateral simultaneous cementless PTHA for hip osteoarthritis from May 2015 to January 2017, of which there were 29 male (70.7%) and 12 female (29.3%) patients. Patients in IV group (n= 11) received only TXA (15 mg/kg) 10 min prior to the incision of each side; and patients in IV + TOP group (n=13) received i.v. TXA (15 mg/kg) combined with topical adiministration (1.0 g) of TXA during the each THA procedure; patients in control group (n=17) received the same dosage of normal saline both i.v. and topically. Outcome measures were total blood loss, hemoglobin, hematocrit value (HCT) changes preoperatively, and on the 1st, 3rd postoperative day, the amount of drainage, and perioperative complications.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 298 - 307
1 Apr 2018
Zhang X Bu Y Zhu B Zhao Q Lv Z Li B Liu J

Objectives

The aim of this study was to identify key pathological genes in osteoarthritis (OA).

Methods

We searched and downloaded mRNA expression data from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) of joint synovial tissues from OA and normal individuals. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses were used to assess the function of identified DEGs. The protein-protein interaction (PPI) network and transcriptional factors (TFs) regulatory network were used to further explore the function of identified DEGs. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the result of bioinformatics analysis. Electronic validation was performed to verify the expression of selected DEGs. The diagnosis value of identified DEGs was accessed by receiver operating characteristic (ROC) analysis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 32 - 32
1 Apr 2018
Zeng W Liu J Yang L
Full Access

Background

The reductions of perioperative blood loss and inflammatory response are important in total knee arthroplasty. Tranexamic acid reduced blood loss and the inflammatory response in several studies. However, the effect of epinephrine administration plus tranexamic acid has not been intensively investigated, to our knowledge. In this study, we evaluated whether the combined administration of low-dose epinephrine plus tranexamic acid reduced perioperative blood loss or inflammatory response further compared with tranexamic acid alone.

Methods

This randomized placebo-controlled trial consisted of 179 consecutive patients who underwent primary total knee arthroplasty. Patients were randomized into 3 interventions: Group IV received intravenous low-dose epinephrine plus tranexamic acid, Group TP received topical diluted epinephrine plus tranexamic acid, and Group CT received tranexamic acid alone. The primary outcome was perioperative blood loss on postoperative day 1. Secondary outcomes included perioperative blood loss on postoperative day 3, coagulation and fibrinolysis parameters (measured by thromboelastography), inflammatory cytokine levels, transfusion values (rate and volume), thromboembolic complications, length of hospital stay, wound score, range of motion, and Hospital for Special Surgery (HSS) score.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 121 - 121
1 Mar 2017
Zeng W Liu J Wang F Yang L
Full Access

Articular cartilage repair remains a challenge in orthopedic surgery, as none of the current clinical therapies can regenerate the functional hyaline cartilage tissue. In this study, we proposed a one-step surgery strategy that uses autologous bone marrow mesenchymal stem cells (MSCs) embedded in type II collagen (Col-II) gels to repair the full thickness chondral defects in minipig models. Briefly, 8 mm full thickness chondral defects were created in both knees separately, one knee received Col-II + MSCs transplantation, while the untreated knee served as control. At 1, 3 and 6 months postoperatively, the animals were sacrificed, regenerated tissue was evaluated by magnetic resonance imaging, macro- and microscopic observation, and histological analysis. Results showed that regenerated tissue in Col-II + MSCs transplantation group exhibited significantly better structure compared with that in control group, in terms of cell distribution, smoothness of surface, adjacent tissue integration, Col-II content, structure of calcified layer and subchondral bone. With the regeneration of hyaline-like cartilage tissue, this one step strategy has the potential to be translated into clinical application.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 154 - 161
1 Mar 2017
Liu J Li X Zhang H Gu R Wang Z Gao Z Xing L

Objectives

Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown.

Methods

We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 125 - 125
1 Feb 2017
Liu J Frisch N Barden R Rosenberg A Silverton C
Full Access

Background

Heterotopic ossification (HO) is a known complication following total hip arthroplasty, with increased incidence in certain patient populations. Current prophylaxis options include oral non-steroidal anti-inflammatory drugs (NSAIDs) and radiation therapy, but an optimal radiation protocol has yet to be clearly defined. We performed a randomized, double-blinded clinical trial in high-risk total hip arthroplasty patients to determine the efficacy of 400 cGy versus 700 cGy doses of radiation.

Methods

147 patients at high risk for HO undergoing total hip arthroplasty (THA) at Rush-St. Luke's- Presbyterian medical center were randomized to either a single 400 cGy or 700 cGy dose of radiation. High risk was defined as diagnosis of diffuse idiopathic skeletal hyperostosis (DISH), hypertrophic osteoarthritis, ankylosing spondylitis, or history of previous heterotopic ossification. Radiation was administered over a 14 × 6 cm area of soft tissue and given on the first or second post-operative day. A blinded reviewer graded anterior-posterior (AP) and lateral radiographs taken immediately post-operatively and at a minimum of 6 months post-operatively. Progression was defined as an increase in Brooker classification from the immediate post-operative to the long-term post-operative radiograph. Operative data including surgical approach, use of cemented implants, revision surgery, and post-operative range of motion data were also collected.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 152 - 152
1 Jan 2016
Tang H Zhou Y Yang D Guo S Tang J Liu J
Full Access

Background

The development of T-smart tomosynthesis has greatly improved the imaging quality of THA by reducing the peri-implant artifacts. In order to find out whether these improvements could lead to diagnostic advantages on stability of cementless THA arthroplasty components, we conducted a diagnostic research by comparing T-smart tomosynthesis, X-ray, and computed tomography.

Methods

We retrospectively included 48 patients who undergone THA revisions in our center between Aug, 2013 and Mar, 2014. For patients with hybrid fixation as their primary prosthesis, the femoral or acetabular components with cement fixation were excluded. There were 41 cementless femoral stems and 35 cementless acetabular cups remained for evaluation. All patients took anterior-posterior and lateral view x-ray examination, anterior-posterior T-smart tomosynthesis scan, and computed tomography before revision surgery. As the gold standard, intraoperative pull-out tests and twisting tests were done for every patient to examine the stability of all implants. 7 orthopedic surgeons evaluated the preoperative images independently, who were divided into the senior group (3 doctors with 6∼13 years’ clinical experience) and the junior group (4 doctors with 2∼4 years’ clinical experience). The x-rays were evaluated first, followed by computed tomography 4 weeks later, and after another 4 weeks’ interval the T-smart tomosynthesis were assessed. All doctors used the same criteria for diagnosis. Diagnostic accuracy for each imaging examination was calculated by comparing with the results of intraoperative tests. The diagnostic accuracy, kappa values between 3 imaging techniques were calculated, and chi-square tests were conducted to examine the difference between the senior and junior groups for each technique.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 207 - 207
1 Jul 2014
He B Liu J Tang T Guo B Pan X Lu A Zhang G
Full Access

Summary

We compare the difference in expression profiles of miRNAs during fracture healing between adult and aged female mice. This study reveals the possibility to improve impaired fracture healing in aged females by regulating key miRNAs at early stage.

Introduction

Impaired fracture healing in aged female skeleton is still a clinical challenge (Holroyd et al., Best Pract Res Clin Endocrinol Metab, 2008, Virk, Lieberman, Arthritis Res Ther, 2012). Angiogenesis and osteogenesis are the two key stages during fracture healing, which are impaired in aged female (Naik et al., J Bone Miner Res, 2009). MicroRNAs (miRNAs) are key post-transcriptional non-coding regulators of gene expression, which has demonstrated important roles in angiogenesis and osteogenesis (Bae et al., Hum Mol Genet, 2012, Plummer et al., Cancer Res, 2013). Understanding how non-coding regulatory RNA in fracture healing changes with age will help identifying novel therapeutic targets that can be exploited to improve fracture healing in the aged females.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 302 - 302
1 Jul 2014
Lam C Assinck P Liu J Tetzlaff W Oxland T
Full Access

Summary Statement

The mechanism of spinal cord injury varies across the human population and this may be important for the development of effective therapies. Therefore, detailed understanding of how variables such as impact velocity and depth affect cord tissue damage is important.

Introduction

Studies have shown an independent effect of impact velocity and depth on injury severity, thereby suggesting importance of the interaction between the two for spinal cord injury. This work examines both the individual and interactive effects of impact velocity and impact depth on demyelination, tissue sparing, and behavioural outcomes in the rat cervical spinal cord. It also aims to understand the contribution of the energy applied during impact, not only the impact factors. Decoupling the effects of these two impact parameters will help to describe the injury mechanism. Maximum principal strain has also been shown to be useful as a predictor for neural tissue damage in vivo and in finite element (FE) models. A better understanding of this relationship with experimental results may help to elucidate the mechanics of spinal cord injury.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 235 - 235
1 Dec 2013
Liu J Small T Masch J Goldblum A Klika A Barsoum W
Full Access

Introduction:

While indications for total knee (TKA) and hip arthroplasty (THA) have expanded over the last 35 years, implant labeling has largely remained stagnant, with conditions including obesity, developmental dysplasia, and many others (Table 1) still considered as contraindications. Implant labeling has not co-evolved with surgical indications, as most orthopaedic implants are cleared through the 510(k) process, which conserves the labeling of the predicate device. While surgeons can legally use devices for off-label indications, the scrutiny regarding off-label use of orthopaedic implants has intensified. The objective of this study was to determine the incidence of off-label use at our institution, define the risk in terms of revision rate associated with off-label use, and to compare activity level, functional outcomes, and general health outcomes for on- and off-label TKA and THA patients.

Methods:

Patients who underwent primary TKA or THA at a large academic tertiary referral center between January 1, 2010 and June 30, 2010 were considered for the study (n = 705). Of this cohort, a convenience sample of 283 patients were selected for the study based on the presence of baseline outcomes data. Patients were contacted via mail and/or phone to collect details regarding potential revision surgeries, UCLA activity scores, short form-12 (SF-12), Knee Injury and Osteoarthritis Outcome Score (KOOS) or Hip Disability and Osteoarthritis Outcome Score (HOOS). Using labeled contraindications from the product inserts from multiple orthopaedic implant manufacturers, procedures were categorized as on-label or off-label. Outcomes including revision rate, activity score, and SF-12, KOOS, and HOOS scores were adjusted for age, gender, and BMI by fitting a logistic model and analyzed using the Wald chi-square test (SPSS, Chicago, IL).


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 251 - 251
1 Jul 2011
Zhu Q Liu J Bhatnagar T Tetzlaff W Oxland T
Full Access

Purpose: Recent studies have shown differences in short term spinal cord pathology between spinal column injury mechanisms, such as contusion and fracture-dislocation. Such differences may exist at longer time points, and thus survival studies are needed in the dislocation models. A more in-depth characterization of the dislocation model is needed for development of a mild-moderate cervical spine dislocation model in a rat that is suitable for survival studies. Specifically, our objective in this study was to determine the dislocation displacement that produces initial spinal column failure in a Sprague-Dawley rat model and to validate a consistent injury at the desired dislocation in-vitro and in-vivo.

Method: For the dislocation model, the dorsal ligaments and facets at C4–C5 were removed to mimic the type of posterior element fracture and ligament injury commonly seen in a bilateral fracture-dislocation. C3 and C4 were clamped together and held stationary while the clamp holding C5 and C6 was connected to an electromagnetic actuator and displaced dorsally to produce the injury while force and displacement were recorded. Twenty-eight isolated cervical spine specimens of Sprague-Dawley rats were used to determine dislocation displacement at initial spinal column failure. The C4–C5 segment sustained dislocation (> 3mm) injury at 0.05mm/s (n=11), 100mm/s (n=4) and 1000mm/s (n=13). Initial spinal column failure was defined at with maximum force during the dislocation. A dislocation displacement of 1.4mm was applied to 7 isolated specimens and 4 anesthetized rats at 430mm/s. The spinal column failure was inspected up to 3 days after injury, as well as hemorrhage of spinal cord in-situ.

Results: The dislocation displacement at in-vitro spinal column failure was 0.95mm±0.32 and not significantly different among specimens at the three dislocation speeds. Under a dislocation displacement of 1.4mm, rupture of the C4–C5 disc occurred in all in-vitro (0.67mm±0.38) and in-vivo (0.65mm±0.17) cases. SCI hemorrhage at epicenter was observed in 3 of 4 cases.

Conclusion: The initial spinal column failure in an innovative SCI model occurs at displacement between 0.65mm and 0.95mm. Dislocation displacement of 1.4mm results in spinal column failure consistently and SCI hemorrhage, and may be suitable for survival studies.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 101 - 101
1 Mar 2008
Choo A Liu J Dvorak M Tetzlaff W Oxland T
Full Access

Spinal cord damage was compared after an injury was inflicted by three clinically relevant mechanisms (contusion, dislocation, and distraction). A novel SCI multi-mechanism system has been developed. Central hemorrhage was common to all mechanisms. Increased membrane permeability was localized to the injury epicenter in contusion but spread further in distraction. Dislocation showed intermediate characteristics exhibiting both local neuronal losses at the epicenter and extended regions of membrane permeability. These preliminary observations suggest that distinct injury mechanisms result in differences in the primary damage of the spinal cord.

This work compared primary damage after spinal cord injury (SCI) inflicted by three clinically relevant mechanisms.

Different injury mechanisms result in regional differences in damage to the spinal cord.

Differences in acute damage may help guide targeted therapies following SCI.

At greater distances from the lesion, dextran was excluded from neuronal somata and in the white matter only distinct accumulation was seen at the Nodes of Ranvier. At the injury site, hemorrhage was common to all mechanisms although more diffuse in the distraction injuries. Increased membrane permeability was localized to the injury epicenter in contusion but spread further in distraction. Dislocation showed intermediate characteristics exhibiting both local neuronal losses at the epicenter and extended regions of permeability.

A novel SCI multi-mechanism system was developed which uses an electromagnetic actuator to permit the modeling of injuries along any direction. Dextran was infused into the cisterna magna 1.5 to 2 hours prior to injury in order to visualize increases in membrane permeability. Stereotaxic clamps were designed to rigidly hold the lower cervical vertebrae of deeply anaesthetized rats permitting displacements at speeds of 100cm/s. A range of displacements was used in this pilot series: 0.9 to 1.1mm contusion, 2 to 6mm dislocation and 3 to 8mm axial distraction. Animals were sacrificed at five minutes in order to analyse the primary injury. These preliminary observations suggest that distinct injury mechanisms result in regional differences in the primary damage of spinal cord gray and white matter.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 219 - 219
1 Nov 2002
Liu J
Full Access

A one-year-8-month-old girl who received radiotherapy and chemotheraphy after excision of embryonal rhabdomyosarcoma from left labium majus pudendi developed slipped capital femoral epiphysis (SCFE) over right hip when she was 9 years old. After mild limp had been noted for 6 months she was then referred to pediatric orthopedic surgeon and two Knowles pins were used to fix the slipping. The second case was a 17-year-old girl with Turner syndrome. SCFE developed during the growth hormone therapy and it was treated with percutaneous pinning with two cannnulated screws. The possibility of developing SCFE should always be kept in mind when treating and following these particular cases to avoid delay of diagnosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 4 | Pages 680 - 683
1 Jul 1997
Kumar VP Satku K Liu J Shen Y

We studied the origin of the anterior deltoid from the lateral third of the clavicle and the leading anterior edge of the acromion in 18 cadaver shoulders by anatomical and histological methods.

The main origin of the deltoid was from the superior surface of the anterior acromion, but muscle and tendinous attachments were also seen on the entire anterior surface of the acromion, its anteroinferior surface and on the whole width of the anterior surface of the clavicle.

Mock arthroscopic acromioplasty was shown to detach deltoid fibres from the anterior surfaces, leaving the superior attachment in continuity. Potentially, arthroscopic subacromial and clavicular resection can detach deltoid fibres originating from the anterior and anteroinferior surfaces of the acromion and clavicle and thus weaken the anterior deltoid.