header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CAN T-SMART TOMOSYNTHESIS IMPROVE DIAGNOSTIC ACCURACY ON THA COMPONENT STABILITY?

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 4.



Abstract

Background

The development of T-smart tomosynthesis has greatly improved the imaging quality of THA by reducing the peri-implant artifacts. In order to find out whether these improvements could lead to diagnostic advantages on stability of cementless THA arthroplasty components, we conducted a diagnostic research by comparing T-smart tomosynthesis, X-ray, and computed tomography.

Methods

We retrospectively included 48 patients who undergone THA revisions in our center between Aug, 2013 and Mar, 2014. For patients with hybrid fixation as their primary prosthesis, the femoral or acetabular components with cement fixation were excluded. There were 41 cementless femoral stems and 35 cementless acetabular cups remained for evaluation. All patients took anterior-posterior and lateral view x-ray examination, anterior-posterior T-smart tomosynthesis scan, and computed tomography before revision surgery. As the gold standard, intraoperative pull-out tests and twisting tests were done for every patient to examine the stability of all implants. 7 orthopedic surgeons evaluated the preoperative images independently, who were divided into the senior group (3 doctors with 6∼13 years’ clinical experience) and the junior group (4 doctors with 2∼4 years’ clinical experience). The x-rays were evaluated first, followed by computed tomography 4 weeks later, and after another 4 weeks’ interval the T-smart tomosynthesis were assessed. All doctors used the same criteria for diagnosis. Diagnostic accuracy for each imaging examination was calculated by comparing with the results of intraoperative tests. The diagnostic accuracy, kappa values between 3 imaging techniques were calculated, and chi-square tests were conducted to examine the difference between the senior and junior groups for each technique.

Results

The accuracy of T-smart tomosynthesis on stability diagnosis (loosening or stable) is 82.6% for femoral stem and 84.5% for acetabular cup. The accuracy of X-ray is 44.3% for stem and 67.3% for cup, and the accuracy of CT is 39.6% for stem and 74.6% for cup. The kappa values between the 3 techniques range from −0.053 to 0.22. For plain X-ray, The diagnostic accuracy of the senior group is significantly higher than that of the junior group (p<0.05), but no significance was found between the 2 groups for tomosynthesis and CT.

Discussion

Our research indicates that, compared with x-ray and CT, the T-smart tomosynthesis technique can greatly improve the diagnostic accuracy on stability of cementless THA components, and significantly shorten the learning curve of inexperienced surgeons. With T-smart tomosynthesis, the peri-implant trabecular bone can be clearly imaged with least metal artifacts ever. T-smart tomosynthesis is an effective and promising imaging technique for diagnosing the stability of THA components.


*Email: