header advert
Results 1 - 39 of 39
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_14 | Pages 6 - 6
10 Oct 2023
Burt J Jabbal M Moran M Jenkins P Walmsley P Clarke J
Full Access

The aim of this study was to measure the effect of hospital case volume on the survival of revision total hip arthroplasty (RTHA).

This is a retrospective analysis of Scottish Arthroplasty Project data, a nationwide audit which prospectively collects data on all arthroplasty procedures performed in Scotland. The primary outcome was RTHA survival at ten years. The primary explanatory variable was the effect of hospital case volume per year on RTHA survival. Kaplan-Meier survival curves were plotted with 95% confidence intervals (CIs) to determine the lifespan of RTHA. Multivariate Cox proportional hazards were used to estimate relative revision risks over time. Hazard ratios (HRs) were reported with 95% CI, and p-value < 0.05 was considered statistically significant.

From 1999 to 2019, 13,020 patients underwent RTHA surgery in Scotland (median age at RTHA 70 years (interquartile range (IQR) 62 to 77)). In all, 5,721 (43.9%) were female, and 1065 (8.2%) were treated for infection. 714 (5.5%) underwent a second revision procedure. Co-morbidity, younger age at index revision, and positive infection status were associated with need for re-revision (p<0.001). The ten-year survival estimate for RTHA was 93.3% (95% CI 92.8 to 93.8). Adjusting for sex, age, surgeon volume, and indication for revision, high hospital case volume was not significantly associated with lower risk of re-revision (HR1, 95% CI 1.00 to 1.00, p 0.073)).

The majority of RTHA in Scotland survive up to ten years. Increasing yearly hospital case volume cases is not independently associated with a significant risk reduction of re-revision.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 68 - 68
11 Apr 2023
Turnbull G Picard F Clarke J Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also produced via 3D culture and then bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 108 - 108
11 Apr 2023
Turnbull G Picard F Clarke J Li B Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period.

In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_5 | Pages 7 - 7
13 Mar 2023
Jabbal A Burt J Moran M Clarke J Jenkins P Walmsley P
Full Access

Revision Total Knee Arthroplasty (rTKA) is predicted to increase by more than 600% between 2005 and 2030. The survivorship of primary TKA has been extensively investigated, however more granular information on the risks of rTKA is needed. The aim of the study was to investigate the incidence of re-revision TKA, with explanatory variables of time from primary to revision, and indication (aseptic vs septic). Secondary aim was to investigate mortality.

This is an analysis of the Scottish Arthroplasty Project data set, a national audit prospectively recording data on all joint replacements performed in Scotland. The period from 2000 to 2019 was studied.

4723 patients underwent revision TKA. The relationship between time from primary to revision TKA and 2nd revision was significant (p<0.001), with increasing time lowering probability of re-revision (OR 0.99 95% CI 0.987 to 0.993). There was no significant association in time to first revision on time from 1st revision to re-revision (p>0.05). Overall mortality for all patients was 32% at 10 years (95% CI 31-34), Time from primary TKA to revision TKA had a significant effect on mortality: p=0.004 OR 1.03 (1.01-1.05). Septic revisions had a reduced mortality compared to aseptic, OR 0.95 (0.71-1.25) however this was not significant (p=0.69).

This is the first study to demonstrate time from primary TKA to revision TKA having a significant effect on probability of re-revision TKA. Furthermore the study suggests mortality is increased with increasing time from primary procedure to revision, however decreased if the indication is septic rather than aseptic.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 20 - 20
1 Jul 2022
Chuntamongkol R Burt J Zaffar H Habbick T Picard F Clarke J Gee C
Full Access

Abstract

Introduction

There is a longstanding presumed association between obesity, complications, and revision surgery in primary knee arthroplasty. This has more recently been called into question, particularly in centres where a high volume of arthroplasty is performed. We investigated the correlation between Body Mass Index (BMI), mortality, and revision surgery.

Method

This was a cohort study of at least 10 years following primary knee arthroplasty from a single high volume arthroplasty unit. Mortality and revision rates were collected from all patients who underwent primary knee arthroplasty between 2009 and 2010. Kaplan Meier analysis was performed.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 6 - 6
1 Jun 2022
Turnbull G Shu W Picard F Clarke J
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period.

In conclusion, we developed novel composite bioinks that can be triple-crosslinked, facilitating successful chondrocyte and MSC growth in 3D bioprinted scaffolds and in vitro repair of an osteochondral defect model. This offers hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 3 - 3
1 Jun 2022
Chuntamongkol R Burt J Zaffar H Habbick T Picard F Clarke J Gee C
Full Access

There is a longstanding presumed association between obesity, complications, and revision surgery in primary knee arthroplasty. This has more recently been called into question, particularly in centres where a high volume of arthroplasty is performed. We investigated the correlation between Body Mass Index (BMI), mortality, and revision surgery.

This was a cohort study of at least 10 years following primary knee arthroplasty from a single high volume arthroplasty unit. Mortality and revision rates were collected from all patients who underwent primary knee arthroplasty between 2009 and 2010. Kaplan Meier analysis was performed.

There were 1161 female and 948 male patients with a mean age of 69 (21 to 97). All cause survivorship excluding mortality was 97.2% up to 13yrs with a minimum of 10 years. The revision rate in this series was 2.8% with no significant difference in revision rates after 10 year between patients with BMI above and below 40 (p=0.438). There was no significant difference in 10–year mortality between patients above and below a BMI of 40 (p=0.238).

This study shows no significant difference in the long term survival of total knee replacement between patients with normal and high BMI. Careful consideration should be given before rationing surgery based on BMI alone.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 2 - 2
1 Jun 2022
Yapp L Clement N Moran M Clarke J Simpson A Scott C
Full Access

This study aims to determine the lifetime risk of revision surgery after primary knee arthroplasty (KA).

The Scottish Arthroplasty Project dataset was utilised to identify all patients undergoing primary KA during the period 1998–2019. The cumulative incidence function for revision and death was calculated and adjusted analyses utilised cause-specific Cox regression modelling to determine the influence of patient-factors. The lifetime risk was calculated for patients aged between 45–99 years using multiple decrement lifetable methodology.

The lifetime risk of revision ranged between 32.7% (95% Confidence Interval (CI) 22.62–47.31) for patients aged 45–49 years and 0.63% (95%CI 0.1–4.5) for patients aged over 90 years. Adjusted analyses demonstrated the converse effect of age on revision (Hazard Ratio (HR) 0.5, 95%CI 0.5–0.6) and death (HR 3.5, 95%CI 3.4–3.7). Male sex was associated with increased risks of revision (HR 1.1, 95%CI 1.1–1.2) and death (HR 1.4, 95%CI 1.3–1.4). Patients with inflammatory arthropathy had a higher risk of death (HR 1.7, 95%CI 1.7–1.8), but were less likely to be revised (HR 0.85, 95%CI 0.74–0.98) than those treated for osteoarthritis. Patients with greater number of comorbidities and greater levels of socio-economic deprivation were at increased risk of death, but neither increased the risk of revision.

The lifetime risk of revision knee arthroplasty varies depending on patient sex, age at surgery and underlying diagnosis. Patients aged between 45 and 49 years have a one in three probability of revision surgery within their lifetime. Conversely, patients aged 90 years or over were very unlikely to experience revision.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 951 - 957
16 Nov 2021
Chuntamongkol R Meen R Nash S Ohly NE Clarke J Holloway N

Aims

The aim of this study was to surveil whether the standard operating procedure created for the NHS Golden Jubilee sufficiently managed COVID-19 risk to allow safe resumption of elective orthopaedic surgery.

Methods

This was a prospective study of all elective orthopaedic patients within an elective unit running a green pathway at a COVID-19 light site. Rates of preoperative and 30-day postoperative COVID-19 symptoms or infection were examined for a period of 40 weeks. The unit resumed elective orthopaedic services on 29 June 2020 at a reduced capacity for a limited number of day-case procedures with strict patient selection criteria, increasing to full service on 29 August 2020 with no patient selection criteria.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 45 - 45
1 Jul 2020
Mahmood F Burt J Bailey O Clarke J Baines J
Full Access

In the vast majority of patients, the anatomical and mechanical axes of the tibia in the coronal plane are widely accepted to be equivalent. This philosophy guides the design and placement of orthopaedic implants within the tibia and in both the knee and ankle joints. However, the presence of coronal tibial bowing may result in a difference between these two axes and hence cause suboptimal placement of implanted prostheses. Although the prevalence of tibial bowing in adults has been reported in Asian populations, to date no exploration of this phenomenon in a Western population has been conducted. The aim of this study was to quantify the prevalence of coronal tibial bowing in a Western population.

This was an observational retrospective cohort study using anteroposterior long leg radiographs collected prior to total knee arthroplasty in our high volume arthroplasty unit. Radiographs were reviewed using a Picture Archiving and Communication System. Using a technique previously described in the literature for assessment of tibial bowing, two lines were drawn, each one third of the length of the tibia. The first line was drawn between the tibial spines and the centre of the proximal third of the tibial medullary canal. The second was drawn from the midpoint of the talar dome to the centre of the distal third of the tibial medullary canal. The angle subtended by these two lines was used to determine the presence of bowing. Bowing was deemed significant if more than two degrees. The position of the apex of the bow determined whether it was medial or lateral. Measurements were conducted by a single observer and 10% of measurements were repeated by the same observer and also by two separate observers to allow calculation of intraclass correlation coefficients (ICCs).

A total of 975 radiographs consecutively performed in the calendar years 2015–16 were reviewed, 485 of the left leg and 490 of the right. In total 399 (40.9%) tibiae were deemed to have bowing more than two degrees. 232 (23.8%) tibiae were bowed medially and 167 (17.1%) were bowed laterally. The mean bowing angle was 3.51° (s.d. 1.24°) medially and 3.52° (s.d. 1.33°) laterally. Twenty-three patients in each group (9.9% medial/13.7% lateral) were bowed more than five degrees. The distribution of bowing angles followed a normal distribution, with the maximal angle observed 10.45° medially and 9.74° laterally. An intraobserver ICC of 0.97 and a mean interobserver ICC of 0.77 were calculated, indicating excellent reliability.

This is the first study reporting the prevalence of tibial bowing in a Western population. In a significant proportion of our sample, there was divergence between the anatomical and mechanical axes of the tibia. This finding has implications for both the design and implantation of orthopaedic prostheses, particularly in total knee arthroplasty. Further research is necessary to investigate whether prosthetic implantation based on the mechanical axis in bowed tibias results in suboptimal implant placement and adverse clinical outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 36 - 36
1 Jul 2020
Mahmood F Clarke J Riches P
Full Access

The meniscus is comprised largely of type I collagen, as well as fibrochondrocytes and proteoglycans. In articular cartilage and intervertebral disc, proteoglycans make a significant contribution to mechanical stiffness of the tissue via negatively charged moieties which generate Donnan osmotic pressures. To date, such a role for proteoglycans in meniscal tissue has not been established. This study aimed to investigate whether meniscal proteoglycans contribute to mechanical stiffness of the tissue via electrostatic effects.

Following local University Ethics Committee approval, discs of meniscal tissue two millimetres thick and of five millimetres diameter were obtained from 12 paired fresh frozen human menisci, from donors < 6 5 years of age, with no history of osteoarthritis or meniscal injury. Samples were taken from anterior, middle and posterior meniscal regions. Each disc was placed within a custom confined compression chamber, permeable at the top and bottom only and then bathed in one of three solutions − 0.14M PBS (mimics cellular environment), deionised water (negates effect of mobile ions) or 3M PBS (negates all ionic effects). The apparatus was mounted within a Bose Electroforce 3100 materials testing machine and a 0.3N preload was applied. The sample was allowed to reach equilibrium, before being subjected to a 10% ramp compressive strain followed by a 7200 second hold phase. Equal numbers of samples from each meniscus and meniscal region were tested in each solution. Resultant stress relaxation curves were fitted to a nonlinear poroviscoelastic model with strain dependent permeability using FEBio finite element modelling software. Goodness of fit (R2) was assessed using a coefficient of determination. All samples were assayed for proteoglycan content. Comparison of resultant mechanical parameters was undertaken using multivariate ANOVA with Bonferroni adjustment for multiple comparisons.

36 samples were tested. A significant difference (p < 0 .05) was observed in the value of the Young's modulus (E) between samples tested in deionised water compared to 0.14M/3M PBS, with the meniscus found to be stiffest in deionised water (E = 1.15 MPa) and least stiff in 3M PBS (E = 0.43 MPa), with the value of E in 0.14M PBS falling in between (0.68 MPa). No differences were observed in the zero strain permeability or the exponential strain dependent/stiffening coefficients. The viscoelastic coefficient and relaxation time values were not found to improve model fit and were thus held at zero. The mean R2 value was 0.78, indicating a good fit and did not differ significantly between solutions. Proteoglycan content was not found to differ with solution, but was found to be significantly increased in the middle region of both menisci.

Proteoglycans make a significant electrostatic contribution to mechanical stiffness of the meniscus, increasing it by 58% in the physiological condition, and are hence integral to its function. It is important to include the influence of ionic effects when modelling meniscus, particularly where fluid flow or localised strain is modelled. From a clinical perspective, it is critical that meniscal regeneration strategies such as scaffolds or allografts attempt to preserve, or compensate for, the function of proteoglycans to ensure normal meniscal function.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_7 | Pages 7 - 7
1 May 2019
Turnbull G Ning E Faulds K Riches P Shu W Picard F Clarke J
Full Access

Antimicrobial resistance (AMR) is projected to result in 10 million deaths every year globally by 2050. Without urgent action, routine orthopaedic operations could become high risk and musculoskeletal infections incurable in a “post-antibiotic era.” However, current methods of studying AMR processes including bacterial biofilm formation are 2D in nature, and therefore unable to recapitulate the 3D processes within in vivo infection.

Within this study, 3D printing was applied for the first time alongside a custom-developed bioink to bioprint 3D bacterial biofilm constructs from clinically relevant species including Staphylococcus aureus (MSSA), Methicillin-resistant staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa. Bacterial viability and biofilm formation in bioprinted constructs was excellent, with confocal laser scanning microscopy (CSLM) used to demonstrate biofilm production and maturation over 28 days. Bioprinted 3D MRSA and MSSA biofilm constructs had greater resistance to antimicrobials than corresponding two-dimensional (2D) cultures. Thicker 3D E.coli biofilms had greater resistance to tetracycline than thinner constructs over 7 days of treatment. Raman spectroscopy was also adapted in a novel approach to non-invasively diagnose 3D bioprinted biofilm constructs located within a joint replacement model.

In conclusion, mature bacterial biofilm constructs were reproducibly 3D bioprinted for the first time using clinically relevant bacteria. This methodology allows the study of antimicrobial biofilm penetration in 3D, and potentially aids future antimicrobial research, replicating joint infection more closely than current 2D culture models. Furthermore, by deploying Raman spectroscopy in a novel fashion, it was possible to diagnose 3D bioprinted biofilm infections within a joint replacement model.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_18 | Pages 1 - 1
1 Dec 2018
Turnbull G Shu W Picard F Riches P Clarke J
Full Access

Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. The need for a novel, cost effective treatment option for osteochondral defects has therefore never been greater.

As an emerging technology, three-dimensional (3D) bioprinting has the capacity to deposit cells, extracellular matrices and other biological materials in user-defined patterns to build complex tissue constructs from the “bottom up”. Through use of extrusion bioprinting and fused deposition modelling (FDM) 3D printing, porous 3D scaffolds were successfully created in this study from hydrogels and synthetic polymers. Mesenchymal stem cells (MSCs) seeded onto polycaprolactone scaffolds with defined pore sizes and porosity maintained viability over a 7-day period, with addition of alginate hydrogel and scaffold surface treatment with NaOH increasing cell adhesion and viability. MSC-laden alginate constructs produced via extrusion bioprinting also maintained structural integrity and cell viability over 7 days in vitro culture. Growth within osteogenic media resulted in successful osteogenic differentiation of MSCs within scaffolds compared to controls (p<0.001). MSC spheroids were also successfully created and bioprinted within a novel, supramolecular hydrogel with tunable stiffness.

In conclusion, 3D constructs capable of supporting osteogenic differentiation of MSCs were biofabricated via FDM and extrusion bioprinting. Future work will look to increase osteochondral construct size and complexity, whilst maintaining cell viability.


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 834 - 840
1 Jun 2017
Clarke-Jenssen J Røise O Storeggen SAØ Madsen JE

Aims

Our aim in this study was to describe the long-term survival of the native hip joint after open reduction and internal fixation of a displaced fracture of the acetabulum. We also present long-term clinical outcomes and risk factors associated with a poor outcome.

Patients and Methods

A total of 285 patients underwent surgery for a displaced acetabular fracture between 1993 and 2005. For the survival analysis 253 were included, there were 197 men and 56 women with a mean age of 42 years (12 to 78). The mean follow-up of 11 years (1 to 20) was identified from our pelvic fracture registry. There were 99 elementary and 154 associated fracture types. For the long-term clinical follow-up, 192 patients with complete data were included. Their mean age was 40 years (13 to 78) with a mean follow-up of 12 years (5 to 20). Injury to the femoral head and acetabular impaction were assessed with CT scans and patients with an ipsilateral fracture of the femoral head were excluded.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 29 - 29
1 Oct 2016
Komaris DS Govind C Riches P Murphy A Ewen A Picard F Clarke J
Full Access

Patients with osteoarthritis (OA) of the knee commonly alter their movement to compensate for deficiencies. This study presents a new numerical procedure for classifying sit-to-walk (STW) movement strategies.

Ten control and twelve OA participants performed the STW task in a motion capture laboratory. A full body biomechanical model was used. Participants were instructed to sit in a comfortable self-selected position on a stool height adjusted to 100% of their knee height and then stand and pick up an object from a table in front of them. Three matrices were constructed defining the progression of the torso, feet and hands in the sagittal plane along with a fourth expressing the location of the hands relative to the knees. Hierarchical clustering (HC) was used to identify different strategies. Trials were also classified as to whether the left (L) and right (R) extremities used a matching strategy (bilateral) or not (asymmetrical). Fisher's exact test was used to compare this between groups.

Clustering of the torso matrix dichotomised the trials in two major clusters; subjects leaning forward (LF) or not. The feet and hands matrices revealed sliding the foot backward (FB) and moving an arm forward (AF) strategies respectively. Trials not belonging in the AF cluster were submitted to the last HC of the fourth matrix exposing three additional strategies, the arm pushing through chair (PC), arm pushing through knee (PK) and arm not used (NA). The control participants used the LF+FBR+PK combination most frequently whereas the OA participants used the AFR+PCL. OA patients used significantly more asymmetrical arm strategies, p=0.034.

The results demonstrated that control and OA participants favour different STW strategies. The OA patients asymmetrical arm behaviour possibly indicates compensating for weakness of the affected leg. These strategy definitions may be useful to assess post-operative outcomes and rehabilitation progress.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 23 - 23
1 Oct 2016
Hansom D Ramage G Burgess K Gadengaard N Millar N Clarke J
Full Access

One of the most common bacteria in orthopaedic prosthetic infections is Staphylococcus Aureus. Infection causes implant failure due to biofilm production. Biofilms are produced by bacteria once they have adhered to a surface.

Nanotopography has major effects on cell behaviour. Our research focuses on bacterial adhesion on nanofabricated materials. We hypothesise that surface nanotopography impacts the differential ability of staphylococci species to adhere via altered metabolomics and may reduce orthopaedic implant infection rate.

Bacteria were grown and growth conditions optimised. Polystyrene and titanium (Ti) nanosurfaces were studied. The polystyrene surfaces had different nanopit arrays, while the Ti surfaces expressed different nanowire structures. Adhesion analysis was performed using fluorescence imaging, quantitative PCR and bacterial percentage coverage calculations. Further substitution with ‘heavy’ labelled glucose into growth medium allowed for bacterial metabolomic analysis and identification of any up-regulated metabolites and pathways.

Our data demonstrates reduced bacterial adhesion on specific nanopit polystyrene arrays, while nanowired titanium showed increased bacterial adhesion following qPCR (P<0.05) and percentage coverage calculations (P<0.001). Further metabolomic analysis identified significantly increased intensity counts of specific metabolites (Pyruvate, Aspartate, Alanine and Carbamoyl aspartate).

Our study shows that by altering nanotopography, bacterial adhesion and therefore biofilm formation can be affected. Specific nanopatterned surfaces may reduce implant infection associated morbidity and mortality. The identification of metabolic pathways involved in adhesion may allow for a targeted approach to biofilm eradication in S. aureus. This is of significant benefit to both the patient and the surgeon, and may well extend far beyond the realms of orthopaedics.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 20 - 20
1 Feb 2016
Alho R Henderson F Rowe P Deakin A Clarke J Picard F
Full Access

The knee joint displays a wide spectrum of laxity, from inherently tight to excessively lax even within the normal, uninjured population. The assessment of AP knee laxity in the clinical setting is performed by manual passive tests such as the Lachman test. Non-invasive assessment based on image free navigation has been clinically validated and used to quantify mechanical alignment and coronal knee laxity in early flexion. When used on cadavers the system demonstrated good AP laxity results with flexion up to 40°. This study aimed to validate the repeatability of the assessment of antero-posterior (AP) knee joint laxity using a non-invasive image free navigation system in normal, healthy subjects.

Twenty-five healthy volunteers were recruited and examined in a single centre. AP translation was measured using a non-invasive navigation system (PhysioPilot) consisting of an infrared camera, externally mounted optical trackers and computer software. Each of the volunteers had both legs examined by a single examiner twice (two registrations). The Lachman test was performed through flexion in increments of 15°. Coefficients of Repeatability (CR) and Interclass Correlation Coefficients (ICC) were used to validate AP translation. The acceptable limits of agreement for this project were set at 3mm for antero-posterior tibial translation.

The most reliable and repeatable AP translation assessments were at 30° and 45°, demonstrating good reliability (ICC 0.82, 0.82) and good repeatability (CR 2.5, 2.9). The AP translation assessment at 0°, 15°, 75° and 90° demonstrated moderate reliability (ICC ≤ 0.75), and poor repeatability (CR ≥3.0mm).

The non-invasive system was able to reliably and consistently measure AP knee translation between 30° and 45° flexion, the clinically relevant range for this assessment. This system could therefore be used to quantify abnormal knee laxity and improve the assessment of knee instability and ligamentous injuries in a clinic setting.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 50 - 50
1 Nov 2015
Ewen A Almustafa M Clarke J Picard F
Full Access

Introduction

Surgical site infection (SSI) remains a concern following total hip arthroplasty (THA). We aimed to identify risk factors for post-operative SSI in THA.

Patients/Materials & Methods

All primary THAs performed in our institution during 2009–2010 were included, giving 1832 cases in 1716 patients. Cohort demographics were mean age 67.9 years (SD10.2), mean BMI 29.6 (SD5.3), 60% female and 90.2% primary indication of osteoarthritis. Post-operative SSI within one year was identified either through hospital infection control records or from Information Services Division (NHS Scotland). Demographic and peri-operative data for known or suspected risk factors for SSI were collected from clinical records. Groups were compared using independent t-tests and chi-squared tests as appropriate.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 2 - 2
1 Apr 2015
Hansom D Ramage G Burgess K Gadengaard N Millar N Clarke J
Full Access

The most common bacteria in orthopaedic prosthetic infections are Staphylococcus, namely Staphylococcus Epidermidis (SE) and Staphylococcus Aureus (SA). Infection causes implant failure due to biofilm production. Biofilms are produced by bacteria once they have adhered to a surface.

Nanotopography has major effects on cell behaviour. Our research focuses on bacterial adhesion and biofilm formation on nanofabricated materials. Bacteria studied were clinically relevant from an orthopaedic perspective, SA and SE. We hypothesise that that nanosurfaces can modulate bacterial adherence and biofilm formation and may reduce orthopaedic implant infection rate.

Isolated bacteria were grown and growth conditions optimised. Bacterial concentrations were calculated by using qPCR. Statistical analysis allowed identification of optimal biofilm growth conditions. These were refined on standard, non-nanopatterned surfaces, and then control and nanopatterned polystyrene (nanopits) and titanium plates (nanowires). Adhesion analysis was performed using fluorescence imaging and quantitative PCR.

4 bacterial strains were isolated and cultured. Growth kinetics based on 24hr cultures allowed isolation of optimal media for biofilm conditions (Dulbecco's Modified Eagle Medium with additional supplements). Highest bacterial concentrations were found following 2hrs incubation with Lysozyme during qPCR. Bacterial concentration significantly increased between 30, 60 and 90 minutes incubation. Differences in percentage coverage on different polysyrene nanosurfaces (nanopits) were noted varying. This was confirmed by qPCR extractions that showed different bacterial concentrations on different nanopatterns. Titanium nanowire surfaces significantly increased bacterial adhesion (P<0.05).

Our study cultured and quantified bacterial biofilm and suggests that by altering nanotopography, bacterial adhesion and therefore biofilm formation can be affected. Specific nanopatterned surfaces may reduce implant infection associated morbidity and mortality. Clearly this is of significant benefit to the patient, the surgeon and the NHS, and may well extend far beyond the realms of orthopaedics.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 32 - 32
1 Aug 2013
Hopper G Deakin A Crane E Clarke J
Full Access

In recent years there has been growing interest in enhanced recovery regimes in lower limb arthroplasty due to potential clinical benefits of early mobilisation along with cost-savings. Following adoption of this regime in a district general hospital, it was observed that traditional dressings were a potential barrier to its success with ongoing wound problems in patients otherwise fit for discharge. The aim of this audit was to assess current wound care practice, implement a potentially improved regime and re-evaluate practice.

A prospective clinical audit was performed over a three month period involving 100 patients undergoing hip or knee arthroplasty. Fifty patients with traditional dressings were evaluated prior to change in practice to a modern dressing (Aquacel™ Surgical). Fifty patients were then evaluated with the new dressing to complete the audit cycle. Clinical outcome measures included wear time, number of changes, blister rate and length of stay. Statistical comparisons were performed using Mann Whitney or Fisher's Exact test (statistical significance, p<0.05).

Wear time for the traditional dressing (2 days) was significantly shorter than the modern dressing (7 days), p<0.001, and required more changes (0 vs. 3 days), p<0.001. 20% of patients developed blisters with the traditional dressing compared with 4% with the modern dressing (p=0.028). Length of stay was the same for the modern dressing (4 days) compared with the traditional dressing (4 days). However, in the modern group 75% of patients were discharged by day 4 whereas in the traditional group this took until day 6.

This audit highlights the problems associated with traditional dressings with frequent early dressing changes, blistering and delayed discharge. These adverse outcomes can be minimised with a modern dressing specifically designed for the demands of lower limb arthroplasty. Units planning to implement enhanced recovery regimes should consider adopting this dressing to avoid compromising patient discharge.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 9 - 9
1 Aug 2013
Wilson W Deakin A Picard F Riches P Clarke J
Full Access

This study aimed to overcome the subjective nature of routine assessment of knee laxity and develop a repeatable, objective method using a hand-held force application device (FAD).

Eighteen clinicians (physiotherapists, consultants, trainees) volunteered to measure the coronal angular deviation of the right knee of a healthy volunteer using a validated non-invasive infrared measuring system. Effort was taken to ensure the knee flexion angle (∼2°) and hand positions were constant during testing. Three varus and valgus stress tests were conducted, in which maximum angular deviation was determined and subsequently averaged, in the following order of conditions: manual stress without the FAD up to a perceived end-point (before); with the FAD to apply a moment of 18 Nm; and again without the FAD (after). A repeated measures ANOVA was used to analyse the results.

All three groups of clinicians produced measurements of valgus laxity with consistent mean values and standard deviations (<1°) for each condition. For varus mean values were consistent but standard deviations were larger.

Valgus deviations varied significantly between conditions (p < 0.01), with deviations achieved using the FAD greater than both before (p < 0.01) and after (p < 0.05) indicating that the perceived endpoints were less than that achieved at 18 Nm. However varus perceived endpoints were no different to that achieved at 18 Nm, suggesting that clinicians usually apply a greater valgus moment than varus. Furthermore, the non-significant increase in valgus deviation between before and after (p = 0.123) is suggestive of a training trend, especially for trainees.

Our standardised knee laxity assessment may have a role in improving the balancing techniques of TKA and the diagnosis of collateral ligament injuries. Also, by quantifying the technique of senior clinicians, and with use of the FAD, the perceptive skills of more junior trainees may be enhanced.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 80 - 80
1 Jan 2013
Divecha H Clarke J Coyle A Barnes S
Full Access

Background

Steroid injections can be used safely to treat trigger fingers. We aimed to determine the accuracy of referring General Practitioner (GP) diagnoses of trigger finger made to an upper limb surgeon. We also aimed to determine the efficacy of a serial two steroid injection then surgery technique in the management of trigger fingers.

Methods

Data was collected prospectively from a “one-stop” trigger finger clinic (based in a district general hospital). 200 trigger fingers identified from September 2005 to November 2008, giving a minimum 1 year follow-up. Data was analysed for correct referring diagnosis, resolution/recurrence rate following injection and the effect of age, injector grade, diabetes on the rate of recurrence.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 45 - 45
1 Oct 2012
Spencer S Deakin A Clarke J
Full Access

Range of motion (ROM) is a well recognised outcome measure following total knee arthroplasty (TKA). Reduced knee flexion can lead to poor outcome after TKA and therefore identification at an early stage is important as it may provide a window for intervention with targeted physiotherapy, closer follow-up and in resistant cases possible manipulation or arthrolysis. ROM combines both flexion and extension and in contrast to flexion, fewer studies have recognised the importance of a lack of full extension or fixed flexion deformity (FFD) following TKA. A residual FFD can increase energy cost, decrease velocity during ambulation and result in pain with knee scores more likely to be diminished than if knee extension was normal. Recognition and early detection of FFD is therefore important. Methods of assessment include by visual estimation or goniometric measurement of knee flexion angle. While goniometers are inexpensive, easy to use and provide more accurate than visual estimates of angles, they have been shown to exhibit poor inter-observer reliability. Therefore they may not be sensitive enough to consistently identify FFD and therefore distinguish between grading systems based on absolute angular limits. The aim of this study was to investigate the accuracy of standard clinical ROM measurement techniques following TKA and determine their reliability for recognising FFD.

Ethical approval was obtained for this study. Thirty patients who were six weeks following TKA had their knee ROM measured. An infrared (IR) tracking system (±1°accuracy) that had been validated against an electro-goniometer was used to give a “true” measurement of the lower limb sagittal alignment with the knee fully extended and maximally flexed while the patient was supine. The patients were also assessed independently by experienced arthroplasty practitioners using a standardised goniometric measurement technique. For goniometric clinically-measured flexion (Clinflex) and extension (Clinext) linear models were generated using IR-measured flexion and extension (IRflex and IRext), BMI and gender as covariables. Data for extension were categorised in none, moderate and severe postoperative FFD as per Ritter et al. 2007 and agreement in classification between the two methods was assessed using the Kappa statistic.

For the linear models for Clinflex and Clinext neither BMI nor gender were significant variables. Therefore the final models were:

Clinflex = 0.54 + 0.66∗IRflex (r2adj = 0.521)

Clinext = 0.23 + 0.50∗IRext (r2adj = 0.247)

The model for Clinflex showed that the IR and clinical measurements coincided at approximately 90° so that for every 10° increase in flexion above 90° clinical measurement only increased by 7° but for every 10° decrease in flexion below 90° clinical measurement only decreased by 7°. The model for Clinext showed that the IR and clinical measurements coincided at approximately 0° so that for every 10° increase in FFD angle, clinical measurement only increased by 5° but if the knee went into hyperextension this would be underestimated by the clinical measure. In identifying FFD there was moderate agreement between the two measurements (κ = 0.44). Clinically nine patients were assessed as having FFD but the IR measurements showed 18 patients having FFD, of which nine patients were not identified clinically.

When assessing knee ROM following joint arthroplasty manual goniometric measurements provided a poor estimate of the range when compared to the “true” angle as measured with a validated IR measurement tool. When the knee was held in maximum flexion there was a tendency to both underestimate and overestimate the true angle. However when the knee was held in extension there was a tendency to underestimate which we believe is important as it would underreport both the frequency and magnitude of FFD. In our study, 18 patients had a moderate FFD as identified by the IR system, only half of which were identified by goniometer measurement alone. Studies of comparisons of both visual and manual goniometry measurements of the knee in maximum flexion with lateral radiographs have shown most errors involved an underestimate of true flexion. It has been concluded that it was safer to underestimate knee flexion angle as it would result in higher pick up rate of cases being performing less well. In contrast however, underestimation while in extension is less desirable as it fails to pick-up FFD which may have benefited from intervention had they been identified. It is known that residual FFD can increase energy cost and decrease velocity during ambulation with pain and functional knee scores more likely to be reduced. Recognition and early detection is therefore important. With the use of more accurate systems to identify and measure FFD, such as the one used for this study may in turn allow more timely treatment and therefore hopefully improved outcomes.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 52 - 52
1 Oct 2012
Wilson W Deakin A Picard F Riches P Clarke J
Full Access

Clinical laxity tests are frequently used for assessing knee ligament injuries and for soft tissue balancing in total knee arthroplasty (TKA). Current routine methods are highly subjective with respect to examination technique, magnitude of clinician-applied load and assessment of joint displacement. Alignment measurements generated by computer-assisted technology have led to the development of quantitative TKA soft tissue balancing algorithms. However to make the algorithms applicable in practice requires the standardisation of several parameters: knee flexion angle should be maintained to minimise the potential positional variation in ligament restraining properties; hand positioning of the examining clinician should correspond to a measured lever arm, defined as the perpendicular distance of the applied force from the rotational knee centre; accurate measurement of force applied is required to calculate the moment applied to the knee joint; resultant displacement of the knee should be quantified.

The primary aim of this study was to determine whether different clinicians could reliably assess coronal knee laxity with a standardised protocol that controlled these variables. Furthermore, a secondary question was to examine if the experience of the clinician makes a difference. We hypothesised that standardisation would result in a narrow range of laxity measurements obtained by different clinicians.

Six consultant orthopaedic surgeons, six orthopaedic trainees and six physiotherapists were instructed to assess the coronal laxity of the right knee of a healthy volunteer. Points were marked over the femoral epicondyles and the malleoli to indicate hand positioning and give a constant moment arm. The non-invasive adaptation of a commercially available image-free navigation system enabled real-time measurement of coronal and sagittal mechanical femorotibial (MFT) angles. This has been previously validated to an accuracy of ±1°. Collateral knee laxity was defined as the amount of angular displacement during a stress manoeuvre. Participants were instructed to maintain the knee joint in 2° of flexion whilst performing a varus-valgus stress test using what they perceived as an acceptable load. They were blinded to the coronal MFT angle measurements. A hand-held force application device (FAD) was then employed to allow the clinicians to apply a moment of 18Nm. This level was based on previous work to determine a suitable subject tolerance limit. They were instructed to repeat the test using the device in the palm of their right hand and to apply the force until the visual display and an auditory alarm indicated that the target had been reached. The FAD was then removed and participants were asked to repeat the clinical varus-valgus stress test, but to try and apply the same amount of force as they had been doing with the device.

Maximum MFT angular deviation was automatically recorded for each stress test and the maximum moment applied was recorded for each of the tests using the FAD. Means and standard deviations (SD) were used to compare different clinicians under the same conditions. Paired t-tests were used to measure the change in practice of groups of clinicians before, during and after use of the FAD for both varus and valgus stress tests.

All three groups of clinicians initially produced measurements of valgus laxity with consistent mean values (1.5° for physiotherapists, 1.8° for consultants and 1.6° for trainees) and standard deviations (<1°). For varus, mean values were consistent (5.9° for physiotherapists, 5.0° for consultants and 5.4° for trainees) but standard deviations were larger (0.9° to 1.6°). When using the FAD, the standard deviations remained low for all groups for both varus and valgus laxity. Introducing the FAD overall produced a significantly greater angulation in valgus (2.4° compared to 1.6°, p<0.001) but not varus (p = 0.67) when compared to the initial examination. In attempting to reach the target moment of 18Nm, the mean ‘overshoot’ was 0.9Nm for both varus and valgus tests. Standard deviations for varus laxity were lower for all groups following use of the FAD. The consultants' performance remained consistent and valgus assessment remained consistent for all groups. The only statistically significant change in practice for a group before and after use of the FAD was for the trainees testing valgus, who may have been trained to push harder (p = 0.01). Standardising the applied moment indicated that usually a lower force is applied during valgus stress testing than varus. This was re-enforced by clinicians, one third of whom commented that they felt they had to push harder for valgus than varus, despite the FAD target being the same.

We have successfully standardised the manual technique of coronal knee laxity assessment by controlling the subjective variables. The results support the hypothesis of producing a narrow range of laxity measurements but with valgus laxity appearing more consistent than varus. The incorporation of a FAD into assessment of coronal knee laxity did not affect the clinicians' ability to produce reliable and repeatable measurements, despite removing the manual perception of laxity. The FAD also provided additional information about the actual moment applied. This information may have a role in improving the balancing techniques of TKA and the management of collateral ligament injuries with regard initial diagnosis and grading as well as rehabilitation.

Finally, the results suggest that following use of the FAD, more experienced clinicians returned to applying their usual manual force, while trainees appeared to use this augmented feedback to adapt their technique. Therefore this technique could be a way to harness the experience of senior clinicians and use it to enhance the perceptive skills of more junior trainees who do not have the benefit of this knowledge.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 57 - 57
1 Oct 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with osteoarthritis [OA]. In spite of extensive research into the consequences of malalignment, our understanding of static tibiofemoral alignment remains poor with discrepancies in the reported weight-bearing characteristics of the knee joint and there is a lack of data regarding the potential variation between supine and standing (functional) conditions. In total knee arthroplasty [TKA] the lower limb alignment is usually measured in a supine condition and decisions on prosthesis placement made on this. An improved understanding of the relationship between supine and weight-bearing conditions may lead to a reassessment of current surgical goals.

The purpose of this study was to explore the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different.

A non-invasive infrared position capture system (accuracy ±1° in both coronal and sagittal plane) was used to assess the knee alignment for 30 asymptomatic controls and 31 patients with OA, both before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values indicating varus in the coronal plane and hyperextension in the sagittal plane) were measured with each subject supine and in bi-pedal stance. For the supine test, the lower limb was supported at the heel and the subject told to relax. For the standing position subjects were asked to assume their normal stance. The change in alignment between these two conditions was analysed using a paired t-test for both coronal and sagittal planes. To quantify the change in 3D, vector plots of ankle centre displacement relative to the knee centre from the supine to standing condition were produced.

Alignment in both planes changed significantly from supine to standing for all three groups. For the coronal plane the supine and standing measurements (in degrees, mean(SD)) were 0.1(2.5) and −1.1(3.7) in the asymptomatic group, −2.5(5.7) and −3.6(6) in the OA group and −0.7(1.4) and −2.5(2) in the TKA group. For the sagittal plane the numbers were −1.7(3.3) and −5.5(4.9); 7.7(7.1) and 1.8(7.7); 6.8(5.1) and 1.4((7.6) respectively. This change was most frequently towards relative varus and extension. Vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the three groups.

Knee alignment can change from supine to standing for asymptomatic and osteoarthritic knees, most frequently towards relative varus and hyperextension. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. In spite of some evidence suggesting a difference between supine and standing knee alignment a mechanical femorotibial (MFT) angle of 0° is a common intra-operative target as well as the desired post-operative weight-bearing alignment. These results indicated that arthroplasties positioned in varus intra-operatively could potentially become ‘outliers’ (>3° varus) when measured weight-bearing. Mild flexion contractures may correct when standing, reducing the need for intra-operative posterior release. These potential changes should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 39 - 39
1 Jun 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with OA. In spite of extensive research into the consequences of malalignment, there is a lack of data regarding the potential variation between supine and standing (functional) conditions. The purpose of this study was to explore this relationship in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different.

Infrared position capture was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA, before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values varus/hyperextension) were measured supine and in bi-pedal stance and changes analysed using a paired t-test. To quantify this change in 3D, vector plots of ankle centre displacement relative to the knee centre were produced.

Alignment in both planes changed significantly from supine to standing for all three groups, most frequently towards relative varus and extension. In the coronal plane, the mean±SD(°) of the supine/standing MFT angles was 0.1±2.5/−1.1±3.7 for asymptomatic (p=0.001), −2.5±5.7/−3.6±6.0 for osteoarthritic (p=0.009) and −0.7±1.4/ −2.5±2.0 for prosthetic knees (p<0.001). In the sagittal plane, the mean±SD(°) of the supine/standing MFT angles was −1.7±3.3/−5.5±4.9 for asymptomatic (p<0.001), 7.7±7.1/1.8±7.7 for osteoarthritic (p<0.001) and 6.8±5.1/1.4±7.6 for prosthetic knees (p<0.001). The vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the groups.

The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. This potential change should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 35 - 35
1 Jun 2012
Spencer S Clarke J Deakin A
Full Access

Range of motion (ROM) is a well recognised outcome measure following TKA and combines both knee flexion and extension. In contrast to achieved flexion, fewer studies have recognised the importance of fixed flexion deformity (FFD). A post-operative FFD can adversely affect pain and functional knee scores and so its detection is important. The aim of this study was to investigate the accuracy of standard clinical ROM measurement techniques following TKA and determine their reliability for recognising FFD.

Thirty patients six weeks post-TKA had knee ROM measurements performed with an infrared (IR) tracking system of ±1 accuracy. The patients were also assessed independently by experienced arthroplasty practitioners using a standardised goniometric measurement technique. For goniometric clinically-measured flexion (Clinflex) and extension (Clinext) linear models were generated using IR-measured flexion and extension (IRflex and IRext), BMI and gender as covariables. Data for extension was categorised as FFD present or absent based on Ritter's criteria and agreement was assessed using Kappa.

For both models neither BMI nor gender were significant variables. Models were Clinflex = 0.54 + 0.66∗IRflex (r2adj=0.521) and Clinext = 0.23 + 0.50∗IRext (r2adj=0.247), showing that for every 10° increase in flexion, clinical measurement only increased by 7° and for every 10° increase in FFD angle, clinical measurement only increased by 5°. In identifying FFD there was moderate agreement between the two measurements (κ=0.44) with disagreement for nine patients all being patients with FFD that were not identified clinically.

For both flexion and extension there was a greater tendency for the goniometric clinical measurements to underestimate the actual angle. In the context of TKA outcome for maximum flexion this may be preferable to overestimating. In contrast, underestimating the degree of flexion when the knee is in the extended position is not desirable as it will potentially underreport the frequency and magnitude of FFD.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 40 - 40
1 Jun 2012
Clarke J Spencer S Deakin A Picard F Riches P
Full Access

Assessment of coronal knee laxity via manual stress testing is commonly performed during joint examination. While it is generally accepted that the knee should be flexed slightly to assess its collateral restraints, the importance of the exact degree of flexion at time of testing has not been documented. The aim of this study therefore was to assess the effect of differing degrees of knee flexion on the magnitude of coronal deflection observed during collateral stress testing.

Using non-invasive infrared technology, the real-time coronal and sagittal mechanical femorotibial (MFT) angles of three asymptomatic volunteers were measured. A single examiner, blinded to the real-time display of coronal but not sagittal alignment, held the knee in maximum extension and performed manual varus and valgus stress manoeuvres to a perceived end-point. This sequence was repeated at 5° increments up to 30° of flexion. This provided unstressed, varus and valgus coronal alignment measurements as well as overall envelope of laxity (valgus angle – varus angle) which were subsequently regressed against knee flexion.

Regression analysis indicated that all regression coefficients were significantly different to zero (p < 0.001). With increasing knee flexion, valgus MFT angles became more valgus and varus MFT angles became more. The overall laxity of the knee in the coronal plane increased approximately fourfold with 30° of knee flexion.

The results demonstrated that small changes in knee flexion could result in significant changes in coronal knee laxity, an observation which has important clinical relevance and applications. For example the assessment of medial collateral ligament (MCL) injuries can be based on the perceived amount of joint opening with no reference made to knee flexion at time of assessment. Therefore, close attention should be paid to the flexion angle of the knee during stress testing in order to achieve a reliable and reproducible assessment.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 32 - 32
1 Apr 2012
Clarke J Picard F Riches PE Wearing SC Deakin A
Full Access

The assessment of knee laxity by application of varus and valgus stress is a subjective clinical manoeuvre often used for soft tissue balancing in arthroplasty or for diagnosis of collateral ligament injuries. Quantitative adjuncts such as stress radiographs have enabled a more objective measurement of angular deviation but may be limited by variations in examination technique. The aim of this study was to quantify clinical knee laxity assessment by measurement of applied forces and resultant angulations.

A novel system for measuring the manually-applied forces and moments was developed. Both hardware and software components underwent laboratory validation prior to volunteer testing. Two clinicians performed multiple blinded examinations on two volunteers and the corresponding angular deviations were measured using a validated non-invasive system with a repeatability of ±1° for coronal alignment. The distance between the kinematically-determined knee and ankle centres was used as the moment arm.

Comparison of single measurements of laxity showed a wide intra- and inter-observer variation (up to 3°). However, when the median value of repeated measurements was used there was good repeatability for both a single surgeon on different days and between the two clinicians with angular measurements agreeing within 1°. In spite of this agreement, the magnitudes of the tangential forces and moments applied varied between clinicians and did not correlate with the corresponding angular deviations.

It was not possible to standardise clinical examination using the current system. Orientation of the applied force with respect to the leg was not quantified and during force measurement it became apparent that the assumed tangential direction of application was not true. This may explain the lack of correlation between the force and angulation data. However, for quantitative measurement of coronal knee laxity using non-invasive laxity measurements, the use of a repeated measures protocol may be accurate enough for clinical application.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 388 - 388
1 Jul 2011
Clarke J Deakin A Nicol A Picard F
Full Access

Computer-assisted technology has provided surgeons with intra-operative quantitative measurement tools that have led to the development of soft-tissue balancing algorithms based on surgeon-applied varus-valgus stress. Unfortunately these forces tend not to be standardised and the resultant algorithms may at best be surgeon-specific. Furthermore, these techniques are only available intra-operatively and rely on the rigid fixation of trackers to bone. The aim of this study was to develop a non-invasive computer-assisted measurement technique and assess the variation in collateral knee laxity measurements between different clinicians.

An image-free navigation system was adapted for non-invasive use by developing external mountings for active infrared trackers. A leg model with rigid tracker mountings was designed and manufactured for comparison. Multiple kinematic registrations of alignment were made for both the model and the right leg of a volunteer to quantify the soft tissue artefacts. Repeatability of the system was assessed by performing two registration processes on eight volunteers. Collateral knee laxity was assessed on a single volunteer by 16 participants of varying experience each applying a maximum varus and valgus knee stress. Two surgeons performed repeated examinations to assess intra-observer variation.

For repeated registrations of alignment, the SD of the non-invasive mounting (0.8°) was only a third higher than the leg model (0.6°) and the actual range was only 1° larger. The repeated alignment measurements on the volunteers showed a high level of agreement with an intraclass correlation coefficient of 0.93. Varus-valgus stress values showed poor inter-observer variation with a wide range of angles for both varus (1° to 7°) and valgus stress (0.5° to 5°). A Mann-Whitney test between the two sets of repeated tests showed that both varus stress and overall laxity were significantly different (p< 0.0001) but that valgus stress was marginal (p=0.052). Intra-observer measurements overall appeared more consistent.

Soft tissue artefacts did not significantly reduce the repeatability of the assessment of coronal knee alignment using a navigation system and this provided a non-invasive technique for assessing coronal knee laxity. The perception of an ‘end-point’ varied significantly between different clinicians and although there may be a role for surgeon-specific algorithms, to use this quantitative data more widely there is a need to standardise the forces and moments applied.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 387 - 387
1 Jul 2011
Macdonald D Clarke J Kinninmonth A
Full Access

Computer-assisted surgical techniques in knee replacement procedures have been shown to increase the accuracy of implant positioning and reduce the incidence of alignment and soft-tissue balancing “outliers”. The use of this technology as a training tool is less widely reported. However, the recent implementation of the EWTD 48-hour working week for junior doctors has focussed attention on the issues of surgical training and experience. Recent evidence from trainee logbooks has shown a significant downward trend in operative exposure and this is forcing changes in the principles of how training should be delivered. Trainees are actively required to demonstrate operative competence in order to progress but are increasingly faced with limited opportunities to acquire these skills. On the other hand, trainers also face difficulties with the prospect of supervising less accomplished trainees which raises ethical issues of patient protection. We present a trainee’s perspective of experience gained in a unit routinely using computer-assisted technology and highlight the potential to enhance the learning process.

Navigation systems provide constant visual and numerical feedback via a computer simulated interpretation. Initially this displays relevant functional anatomy, helps in the identification of anatomical landmarks and demonstrates sagittal and coronal plane deformities which can be difficult to accurately assess “by eye”. Computer-assisted systems have the benefit of displaying only bony anatomy which improves visualisation. This can then be compared to the palpable, clinical deformity on the table. The geometry of the native knee is also made clear with the navigation system leading to a better understand of the objectives of TKR. There are some aspects of the biomechanics of the knee which are difficult to appreciate, such as the changes in varus-valgus alignment during flexion and extension. This may be very subtle and difficult to pick up manually but can look quite dramatic on the computer.

The position of cutting jigs which are held to the bone by pins can be altered by inadvertently lifting or hanging on them with the saw, when making the bone cuts. Additionally the cut can be altered by advancing the cutting block closer to the bone, for example if cutting the tibia with a posterior slope. Both these effects can be quantified by using the navigation tools to confirm the cut that has been made. Trainers can have the benefit of seeing the alignment and confirming the cuts made by a trainee without having to get closely involved with the operation. Cementation technique is also open to scrutiny with the ability to compare pre and post cementation alignment.

The positive feedback obtained from computer assisted surgery is educational to the trainee, by giving an undisputable computer generated graphic of what they are doing during the different stages of total knee arthroplasty. It also shows what has been achieved at the end of the procedure. This can give both the trainer and trainee more confidence in the procedure and ensures patient safety.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 398 - 398
1 Sep 2009
Clarke J Deakin A Picard F Nicol A
Full Access

The role of CAOS systems is now well established in several areas of orthopaedic surgery. The increasing use of these systems, particularly in knee arthroplasty, has been supported by clinical trials that demonstrate a more accurate final position of implanted devices compared with conventional instrumentation. CAOS technology is constantly evolving along with its expanding list of potential indications. This requires the adaptation of both software and hardware components. It is therefore essential that potential users have confidence in the accuracy of these systems. The aim of this project was to design and manufacture a standardised measurement object (phantom) to independently evaluate CAOS system performance.

The American Society for Testing and Materials (ASTM) International along with CAOS International recently drafted a standard for measuring technical accuracy of navigation systems. This proposed standard was obtained and its recommendations used to design a phantom model. This consisted of a 150×150×20mm base plate and two additional levels including a single 30° slope. This created a 3D surface on which points could be placed. Co-ordinates for 21 points were given to establish the x, y and z axes of a Cartesian system and then to have points at a variety of known locations in this 3D space. The final model was machined from a billet of marine grade aluminium alloy 6082-T6 (chosen for its dimensional stability) using a vertical computer numerical controlled (CNC) milling machine with the co-ordinate points drilled with a Ø0.8mm 60° BSO centre drill to a depth of 1.2mm. The drill holes, with chamfers of Ø1.0mm, were designed to accommodate a ball-nosed pointer tip of a known diameter. A Perspex base unit with three different sites of rigid tracker attachment was made to hold the phantom and provide its reference frame. This avoided the need to directly modify the phantom itself.

The final design has been used to measure the positional accuracy of a novel portable navigation system and demonstrate that it is not yet suitable for clinical evaluation due to errors of 1 – 6 mm in point location. It has also allowed independent technical validation of current pre-existing navigation systems.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 32 - 32
1 Mar 2009
DILLON J CLARKE J MENNEESSIER A HERIN L PICARD F
Full Access

Introduction: A successful total knee replacement (TKR) relies upon effective soft tissue management. Historically, soft tissue balancing has been difficult to assess and quantify intraoperatively. Computer navigation permits us to accurately assess kinematics during surgery. In a previous study we performed a series of varus and valgus stress measurements in extension to devise an algorithm for soft tissue management. In this study we evaluate the effectiveness of this algorithm.

Methods: This prospective study used the Orthopilot® CT-free navigation system during TKR for 57 patients with end-stage arthritis. We collected intraoperative kinematic data for 42 varus knees. Pre- and post-operatively, a varus and valgus stress was applied at maximum extension, recording the mechanical femorotibial (MFT) angle. There were no patellar resurfacings. The following medial releases were performed based upon the kinematics and the algorithm below:

No release–MFT angle not less than −12° with varus stress, greater than 2° with valgus stress, and/or if extension deficit was not greater than 5°.

Moderate release–MFT angle less than −12° with varus stress, between −5° and 2° with valgus stress, and/or extension deficit not greater than 5°.

Proximal release–MFT angle less than −12° with varus stress, less than −5° with valgus stress, and/or extension deficit greater than 5°.

Results: Pre-operatively, the mean MFT angle was −9.6°varus (−3° to −22°) with varus stress and −0.8°varus (4° to −11°) with valgus stress. Post-operatively, the mean MFT angle was −3.5° varus (0° to −5°) with varus stress, and 2.1° valgus (4° to −1°) with valgus stress.

Using regressional analysis, there was a strong linear correlation between both varus (r=0.871, p< 0.0001) and valgus (r=0.894, p< 0.0001) stresses and the MFT angle.

Post-operatively, the mean MFT angle was maintained within a narrow range (0° to −5° with varus stress, 4° to −1° with valgus stress), with no outliers. There were no extension deficits.

Conclusions: Using computer navigation a quantifiable soft tissue management system was introduced. We evaluated this algorithm, and obtained reproducible results within a narrow range and no outliers. This algorithm may provide an effective soft tissue management plan in TKR.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 124 - 124
1 Mar 2009
CLARKE J DILLON J MENNESSIER A HERIN L PICARD F
Full Access

Introduction: Computer navigation systems allow real time evaluation of knee behaviour intraoperatively. Measurements made by navigation reflect soft tissue balance throughout surgery. We studied three different populations of patients undergoing total knee replacement (TKR) with a CT-free navigation system where the goal was to achieve normal alignment. We compared the initial pathological kinematics in each group with the resultant kinematics after correction.

Method: The Orthopilot® was used during TKR for three groups of patients A (n=71), B(n=60) and C(n=43) all with endstage osteoarthritis. Patients in groups A and B had TKR performed by surgeon 1, and group C by surgeon 2.

Results: Pre-operatively, the mean mechanical femoral axis and the mean mechanical femoro-tibial (MFT) angle were calculated. The mean mechanical femoral axis for group A was −0.5° varus (−6° to 9°), group B was −0.68° varus(−6° to 6°), and for group C was 2.67° valgus (−12° to 10°). P< 0.0001, using Kruskal-Wallis test. Pre-operatively, the mean MFT angle for group A was −3.75° varus(−15° to 17°), group B was −2.98° varus(−17° to 13°), and for group C was 0.16° valgus(−17° to 25°). P=0.003 using Kruskal-Wallis test. These results show that the initial preoperative kinematics are different for the three different populations.

Post-operatively we measured the mean MFT angle in groups A, B and C. In group A, the mean MFT angle was −0.38° varus (−4° to 2°), group B was −0.41° varus(−5° to 2°), and group C was −0.02° varus(−3° to 5°). P=0.7 using the Kruskal-Wallis test. These results show that the post-operative kinematics are similar between the three different populations.

Discussion: Populations A and B preoperatively exhibited a mean varus MFT angle (−0.5° and −0.68° respectively), compared with a mean valgus MFT angle for group C(2.67°), which were statistically significantly different. Although different surgeons operated on the 3 groups (surgeon 1 operated on groups A and B, and surgeon 2 operated on group C), post-operative kinematics were within a narrow range (−0.02° to −0.41°) and not statistically different (p=0.7).

Conclusion: The Orthopilot® results showed that these populations had different initial pathological kinematics. Despite this, and using different operators we obtained similar post-op results within a narrow range. Computer navigation produces reliable, reproducible results independent of population or operator variables.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 126 - 126
1 Mar 2009
DILLON J CLARKE J MENNESSIER A HERIN L PICARD F
Full Access

Introduction: Accurate soft tissue balancing is an essential part of total knee replacement (TKR), but has been difficult to quantify using traditional instrumentation methods. Computer navigation systems allow us to accurately assess intra-operative kinematics, which are affected by soft tissue management. The aims of this study were to evaluate the role of varus and valgus stress measurements and subsequently devise an algorithm for soft tissue management during TKR.

Methods: We used the Orthopilot® CT-free navigation system during TKR for patients with primary end-stage arthritis. This was a prospective study with 71 patients collecting intra-operative kinematic data. 57 knees were varus, 13 valgus, and 1 well aligned.

Pre- and post-operatively, the surgeon applied a varus and valgus stress at maximum extension, recording the mechanical femorotibial (MFT) angle. There were no patellar resurfacings. We compared the kinematics of each varus knee. Based upon the kinematics and the surgeon’s experience the following medial releases were performed as usual and divided into three categories:

No release (limited medial approach).

Moderate release (postero-medial release including the semimembranosis).

Proximal (extensive) release.

Results: Pre-operatively, the mean MFT angle was −9.6° (−3° to −22°) with varus stress and −0.8° (4° to −11°) with valgus stress. Post-operatively, the mean MFT angle was −3.7° (−1° to −7°) with varus stress, and 1.1° (4° to −3°) with valgus stress. Using regressional analysis, there was a strong linear correlation between both varus (r=0.742, p< 0.0001) and valgus (r=0.771, p< 0.0001) stresses and the MFT angle.

With the following medial releases, these kinematics were found:

No release – MFT angle not less than −12° with varus stress, greater than 2° with valgus stress, and/or if extension deficit was not greater than 5°.

Moderate release – MFT angle less than −12° with varus stress, between −5° and 2° with valgus stress, and/or extension deficit not greater than 5°.

Proximal release – MFT angle less than −12° with varus stress, less than −5° with valgus stress, and/or extension deficit greater than 5°.

The results show that post-operatively, the mean MFT angle is maintained within a narrow range (−1° to −7° with varus stress, 4° to −3° with valgus stress). 5/57(9%) patients had a mean MFT angle of 6.4°(0° to 7°) with valgus stress, and were considered to have been over-corrected. There were no extension deficits.

Conclusions: Navigation allows us to quantify soft tissue balancing based upon the initial kinematics with varus and valgus stress testing. From these measurements, an algorithm was developed, which showed that an appropriate release was made in 52/57 (91%) patients, but this may require some adjustment to reduce the number of outlying results.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 560 - 561
1 Aug 2008
McConnell J Dillon J Clarke J Picard F Gregori A
Full Access

The accuracy of measurement in computer-assisted total knee arthroplasty is dependent on the quality of data acquisition at the start of the procedure; errors in landmark identification could lead to misalignment and therefore poorer longterm outcomes.

Some navigation systems require the surgeon to explicitly identify the femoral epicondyles in order to calculate the trans-epicondylar axis, whereas other systems are able to interpolate the epicondylar location based on a number of points acquired from the distal femoral surface. Significant inter-observer variability in landmark identification has been previously reported in dry bone studies. The purpose of this study was to test the accuracy of identification of the epicondyles during a simulated total knee replacement on a fresh cadaveric specimen.

An unfixed fresh cadaveric left lower limb was used to perform a navigated total knee replacement using the Orthopilot® (B|Braun-Aesculap, Tuttlingen, Germany) image-free navigation system.

Sixteen surgeons attending an advanced navigation training course were invited to take part. A single consultant surgeon performed initial dissection and pin placement, up to the point of landmark acquisition. Each subject was then asked to use a pointer tool to identify the medial and lateral epicondyles, as they would in an operative situation. Data were recorded by the Orthopilot® system, and exported as a 3D array for further analysis.

Initial visualisation with a 3D scatter plot showed that points were evenly distributed within a circular pattern around each epicondyle. The length of a vector between each point on each epicondyle was calculated in turn. The maximum distances between points were 15.6mm for the medial epicondyle, and 19.9mm for the lateral epicondyle.

We then calculated the length and angulation of the trans-epicondylar axis (TEA) for each observer, equivalent to the vector between each pair of points (medial and lateral epicondyle). An average TEA was calculated, and the range and standard deviation of angulation were determined. In the x axis the range was 16.3° (–8.3° to 7.9°, SD 5.1°), in the y axis the range was 18.7° (–8.7° to 10°, SD 5.2°) and in the z axis the range was 20.5° (–10.1° to 10.4°, SD 6.5°). Range of recorded TEA length was 64.5 to 74.9mm (mean 70.6mm, SD 3.3mm).

We conclude that in this simulated operative scenario, surgeons exhibited considerable variability when locating the epicondyles. Range of angulation of the TEA exceeded 16° (SD > 5.1°) in all 3 planes. We cannot recommend the use of a trans-epicondylar axis determined from 2 single points, as a reliable landmark in navigated total knee replacement.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 567 - 567
1 Aug 2008
Dillon J Clarke J Kinninmonth A Gregori A Picard F
Full Access

Performing Total Knee Replacement (TKR) surgery using computer assisted navigation systems results in more reproducibly accurate component alignment. Navigation allows real time evaluation of passive knee behaviour throughout flexion. These kinematic measurements reflect tibial rotation about the femoral condyles, patellar tracking and soft tissue balance throughout surgery. In this study, we aim to study dynamic knee function in navigated and standard instrumentation TKR patients performing a range of everyday activities using gait analysis.

A prospective randomised controlled trial evaluated the functional outcome using gait analysis with 20 patients in each of three groups – Standard, Navigated and Control. The same implant (Scorpio) and navigation system (Strykervision) was used for each patient. The control group were subjects with no history of knee pathology or gait abnormality. Using an 8-camera Vicon motion analysis system set at 120Hz (real-time motion), we assessed the following functional activies: walking, rising from/sitting in chair, ascending/descending stairs. One functional outcome measure we have analysed so far is the maximum flexion angle.

The maximum flexion angle was recorded for each activity in standard, navigated and control groups respectively. ANOVA was performed, with significance set at p< 0.05. Maximum flexion angle during gait was 65.6°, 72.6° (p=0.009) and 73.5° (p=0.74), chair rising/sitting was 82.5°, 92.8° (p=0.01), and 93.5° (p=0.64), stairs ascent/descent was 81.8°, 99° (p< 0.0001), and 113.4° (p< 0.0001).

In terms of dynamic functional outcome, we found that the average maximum flexion angle for the navigated group was greater than for the standard group; moreover, this was similar to the maximum flexion angle for the control group when performing a variety of normal daily activities.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 301 - 301
1 Jul 2008
Clarke J Campbell C Murray H Meek R
Full Access

Introduction: Despite clinical history, examination and plain radiography it is occasionally difficult to locate the origin of hip pain. This is particularly relevant where the management will be a total hip arthroplasty. Local anaesthetic arthrogram of the hip may provide a simple, safe and reliable test to determine if the hip is the source of the patient’s symptoms. The aim of this study was to establish the use of this investigation in the management of hip pain.

Methods: All local anaesthetic hip arthrograms were reviewed from 1999 to 2005. All patients had completed a pain questionnaire following the arthrogram. Patients were classified into 3 groups; 1) Mild osteoarthritic changes on plain radiographs with possible referred pathology; 2) Minimal radiological changes but no obvious other pathology to refer pain; 3) Previous hip arthroplasty with unexplained pain. Those who subsequently had a primary or revision hip arthroplasty were assessed post-operatively by means of the Oxford hip score.

Results: Fifty-seven patients in total underwent a local anaesthetic hip arthrogram. From all the groups 34 patients obtained pain relief and 24 proceeded to primary or revision hip arthroplasty. Twenty three (96%) had a satisfactory post-operative outcome at an average follow-up of 2 years (average Oxford score 28). The remaining 10 patients with positive arthrograms are still waiting for surgery. All negative arthrogram patients were successfully discharged.

Discussion: A positive response to local anaesthetic hip arthrogram predicts a successful response to surgery. This permits accurate information of the results of hip surgery to be given to patients and aids in a management plan for a group of patients that can be otherwise challenging.


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 2 | Pages 288 - 292
1 Mar 1990
Pozo J Powell B Andrews B Hutton P Clarke J

We reviewed 35 patients who had an amputation following the failure of treatment for severe lower limb trauma. Seven of the amputations were for ischaemia, within one month of injury; 13 were between one month and one year for infection complicating loss of wound cover in un-united fractures; and 15 were later than one year after injury, mainly for infected non-union. The latter group of patients had had an average of 12 operations and 50 months of treatment, including eight months in hospital. We used a new limb injury score based on damage to the individual tissue elements; this indicated that, even in the absence of neurovascular injury, the presence of severe damage to skin, bone and muscle, with wound contamination, particularly in the lower tibia, had a poor prognosis. We therefore recommend, to avoid multiple operations, with prolonged hospitalisation and suffering, that these patients should have early independent review by orthopaedic and plastic surgeons with the aim of establishing an accurate prognosis for the salvage of a useful limb.