header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

BIOMECHANICAL ANALYSIS BETWEEN PEEK AND TITANIUM SCREW-RODS SPINAL CONSTRUCT SUBJECTED TO FATIGUE LOADING

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 4.



Abstract

PEEK rods construct has been proposed to allow better load sharing among spinal components when compared to the more traditional Titanium rods constructs. However, such proposal has largely derived from single-load in-vitro testing and the biomechanical differences between the two constructs when subjected to fatigue loading remain unknown. Current study comparatively analyzed the in-vitro biomechanical performance of PEEK and Titanium rod constructs as spinal implants through a 5 hour fatigue loading test. The disc height and intradiscal pressure of the instrumented and adjacent levels pre- and post-loading were recorded for analysis. The stress levels on the rods and bone stress near the screw-bone interface were also collected to investigate the likely failure rates of the two constructs. The results showed that the Titanium rods construct demonstrated a minimum amount of loss of disc height and intradiscal pressure at the instrumented level, however, a significant loss of the disc height and intradiscal pressure at adjacent levels compared to the intact spine were identified. In contrast, the disc height and intradiscal pressure of the PEEK rods were found to be comparable to those of the intact spine for all levels. The PEEK rods group also showed significantly less bone stress near the screw-bone interface compared to the Titanium rods group. Current study has demonstrated the potential benefits of the PEEK rods construct in reducing the risks of adjacent segment disease and implant failure rates when compared to the more traditional Titanium rods construct.


Email: