header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Does High-Flexion Total Knee Arthroplasty Promote Early Loosening of the Femoral Component?

The International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction

High-flexion knee implants have been developed to accommodate a large range of motion (ROM > 120°) after total knee arthroplasty (TKA). In a recent follow-up study, Han et al. [1] reported a disturbingly high incidence of femoral loosening for high-flexion TKA. The femoral component loosened particularly at the implant-cement interface. Highly flexed knee implants may be more sensitive to femoral loosening as the knee load is high during deep knee flexion [2], which may result in increased tensile and/or shear stresses at the femoral implant fixation.

The objective of this study was to analyse the load-transfer mechanism at the femoral implant-cement interface during deep knee flexion (ROM = 155°). For this purpose, a three-dimensional finite element (FE) knee model was developed including high-flexion TKA components. Zero-thickness cohesive elements were used to model the femoral implant-cement interface. The research questions addressed in this study were whether high-flexion leads to an increased tensile and/or shear stress at the femoral implant-cement interface and whether this would lead to an increased risk of femoral loosening.

Materials & methods

The FE knee model utilized in this study has been described previously [3] and consisted of a proximal tibia and fibula, TKA components, a quadriceps and patella tendon and a non-resurfaced patella. For use in this study, the distal femur was integrated in the FE model including cohesive interface elements and a 1 mm bone cement layer. High-flexion TKA components of the posterior-stabilised PFC Sigma RP-F (DePuy, J&J, USA) were incorporated in the FE knee model following the surgical procedure provided by the manufacturer. A full weight-bearing squatting cycle was simulated (ROM = 50°-155°). The interface stresses calculated by the FE knee model were decomposed into tension, compression and shear components. The strength of the femoral implant-cement interface was determined experimentally using interface specimens to predict whether a local interface stress-state calculated by the FE knee model would lead to interface debonding.

Results

During deep knee flexion, tensile stress concentrations were found at the femoral implant-cement interface particularly beneath the anterior flange. Shear stress concentrations were observed at the interface beneath the anterior flange and the posterior femoral condyles. The peak tensile interface stress increased from 1.6 MPa at 120° of flexion to 5.5 MPa during deep knee flexion at the interface beneath the anterior flange. The peak shear stress was even higher at this interface location and increased from 4.1 MPa at 120° of flexion to 11.0 MPa at maximal flexion (155°). Based on the interface strength experiments, 5.8% of the interface beneath the anterior flange was predicted to debond at 120° of flexion, which increased to 10.8% during deep knee flexion.

Discussion

Obviously, the FE knee model utilized in this study contains limitations which may have affected the interface stresses calculated. However, the results presented here clearly demonstrate increasing tensile and shear stresses in substantial parts of the femoral implant-cement beneath the anterior flange during deep knee flexion. Based on the interface strength experiments the anterior interfacial stress-state calculated by the FE knee model leads to local interface debonding during deep knee flexion, which increases the risk of femoral loosening. Proper anterior fixation of the femoral component is essential to reduce the risk of femoral loosening for high-flexion TKA.


Email: