header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Effect of Cement Technique on Component Position During Robotic-Arm Assisted Unicompartmental Arthroplasty (UKA)

The International Society for Technology in Arthroplasty (ISTA)



Abstract

INTRODUCTION

we have previously reported that bone preparation is quite precise and accurate relative to a preoperative plan when using a robotic arm assisted technique for UKA. However, in that same study, we found a large variation between intended and final tibial implant position, presumably occuring during cement curing. In this study, we reviewed a subsequent cohort of patients in which the tibial and femoral components were cemented individually with ongoing evaluation of tibial component position during cement curing.

METHODS AND MATERIALS

Group 1 comprised the simultaneous cementing techniquegroup of patients, previously reported on, although their x-rays were re-analyzed. Group 2 consisted of the individual cementing technique cohort. All implants were identical, specifically a flat, inlay all-polyethylene tibial component. Postoperative x-rays from each cohort of patients were evaluated using image analysis software. Statistical evaluation was performed.

RESULTS

In Group 1, average bone preparation was 5.13 + 2.70 degrees of varus and 7.40 + 2.59 degrees of posterior slope. Final implant position was 3.56 + 1.93 degrees of varus and 5.19 + 3.37 degrees of slope. The variance from intended position was 2.31 + 1.74 degrees of varus and 3.80 + 2.90 degrees of slope. For Group 2, average bone preparation was 5.26 + 3.70 degrees of varus and 5.49+ 2.39 degrees of posterior slope. Final implant position was 6.58 + 3.40 degrees of varus and 6.11 + 2.39 degrees of slope. The variance from intended position was 1.82 + 1.42 degrees of varus and 1.39 + 1.48 degrees of slope. ANOVA revealed no differences between groups regarding bone prep in the coronal plane, final implant slope, or variation from intended coronal position. However, bone prep in the sagittal plane showed statistically significant more slope for Group 1 (p = 0.03), increased slope in Group 2 (p=0.004), and greater variation from intended sagital position for Group 1.

CONCLUSIONS

Independent cementing of implants showed decreased variation in final tibial component position. However, some implants showed up to 6 degrees of malposition from the intended position. We believe this to be a shortcoming of the inlay style of tibial component for UKA, which even cannot be overcome with the precision and accuracy of a robotic arm assistant.


Email: