header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Accuracy of Robotically Assisted Acetabular Cup Implantation

The International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction

Recent gains in knowledge reveal that the ideal acetabular cup position is in a narrower range than previously appreciated and that position is likely different based on femoral component anteversion. For that reason more accurate acetabular cup positioning techniques will be important for contemporary THA. It is well known that malalignment of the acetabular component in THA may result in dislocation, reduced range of motion or accelerated wear. Up to 8% of THA patients have cups malaligned in version by more than ±10° outside of the Lewinnek safe zone. This type of malalignment may result in dislocation of the femoral head and instability of the joint within the first year, requiring reoperation. Reported incidences of reoperation are 1-9% depending on surgical skills and technique. In addition, cup malalignment is becoming increasingly important as adoption of hard on hard bearings increases as the success of large head hard on hard bearings seems to be more sensitive to cup positioning. This study reports the accuracy of a haptic robotic system to ream the acetabulum and impact an acetabular cup compared to manual instrumentation.

Methods

Six fresh frozen cadaveric acetabula were CT scanned and three-dimensional templating of the center of rotation, anteversion and inclination of the cup was determined pre-operatively. Half of the specimens were prepared with manual instrumentation while half were prepared with robotic guidance. Haptic and visual feedback were provided through robotics and an associated navigation system to guide reaming and impaction of the cup. The robot constrained the orientation and position of the instruments thus constraining the inclination, anteversion and center of rotation of the reamer, trial and the final cup. Post-operative CT's were used to determine the achieved cup placement and compared to the pre-operative plans.

Results

In all cases, robotic guidance resulted in placement of the acetabular cup within ±3° of anteversion, ±3° of relative to the pre-op plan. The average absolute inclination error was 1.5±1.2° and the average absolute anteversion error 1.3±1.4°. Cup placement with robotic assistance was significantly more accurate and precise than with manual instrumentation. With manual instrumentation the errors were, on average, 4.2 times higher in inclination and 4.8 times higher in anteversion compared to robotic instrumentation.

Conclusion

This haptic robotic system substantially improved the accuracy of acetabular reaming and placement of the final cup compared to traditional manual techniques. With greater knowledge of ideal acetabular cup position, highly accurate techniques may allow surgeons to decrease the risk of dislocation, promote durability and improve the ability to restore appropriate leg length and offset. Haptic robotics has proven to be safe and effective in both knee and hip surgery and provides the potential to redefine the “instrument set” used for orthopedic procedures.


Email: