header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

The Hydroxyapatite Containing Silver Inhibits the Biofilm Formation in a Flow Condition

The International Society for Technology in Arthroplasty (ISTA)



Abstract

Bacterial infection related to prosthetic replacement is one of the serious types of complications. Recently, there has been a greater interest in antibacterial biomaterials. In order to reduce the incidence of replacement-associated infections, we developed a novel coating technology of Hydroxyapatite (HA) containing silver (Ag). We reported the Ag-HA coating showed high antibacterial activity against E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) under static condition. However, human bodies have a circulating body fluid, which is not a static condition. And the growth and the maturation of biofilm, which is said that a common course of persistent infections at a surgical site, are enhanced by the flow of broth in culture environment. Therefore, we evaluated whether the Ag-HA coating inhibits the biofilm formation on its surface or not by a biofilm-forming test under flow condition in this study.

Ag-HA or HA powder was sprayed onto the commercial pure titanium disks using a flame spraying system. The HA coating disks were used as negative control. The biofilm-forming methicillin sensitive S. aureus (BF-MSSA; Seattle 1945) strain and the BF-MRSA (UOEH6) strain were used. The pre-culture bacterial suspension (about 105 colony forming units; CFU) was inoculated onto the Ag-HA and HA coating disks. After cultivation at 37 °C for 1 h, the disks were rinsed twice with 500 μL sterile PBS (-) to eliminate the non-adherent bacteria. The number of the adherent bacteria on these disks was counted using culture method. After rinsing, the disks were transferred into petri-dish containing Trypto–Soy Broth (TSB) + 0.25% glucose with a stirring bar on the magnetic stirrer and they were cultured at 37°C for 7 days. In the meantime, the stirring bar was spun at 60 rounds per minute. Then, the disks were immersed in a fluorescent reagent to stain the biofilm. Finally, the biofilm on each disk was observed by a fluorescence microscope and the biofilm-covered rate on the surfaces of them was calculated using the NIH image software.

The number of the bacteria on these disks was not so different between Ag-HA and HA coating after rinsing. After biofilm-forming test, the coverage of the biofilm of BF-MSSA was 2.1% and 81.0% on the Ag-HA and HA coatings, respectively. Similarly, in the case of BF-MRSA, it was 7.7% and 72.0% on the Ag-HA and HA coatings, respectively. Though bacteria slightly adhered, biofilm was hardly observed on the Ag-HA coating. The biofilm on the HA coating was extensive and mature. The inhibition effect of biofilm formation on the Ag-HA coating might be ascribed to the antibacterial effect by Ag ions released from the coating. Because Ag ions have a broad spectrum of antibacterial activity against pathogens, including biofilm forming bacteria, they inhibited the biofilm formation on the Ag-HA coating by killing adherent bacteria. Even in a flow condition, it was suggested that the AgHA shows the antibacterial activity, though the conditions in this work are different from those in living body.


Email: