header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

Oncology

The distribution of heat in bone during radiofrequency ablation of an ex vivo bovine model of osteoid osteoma



Download PDF

Abstract

Osteoid osteoma is treated primarily by radiofrequency (RF) ablation. However, there is little information about the distribution of heat in bone during the procedure and its safety. We constructed a model of osteoid osteoma to assess the distribution of heat in bone and to define the margins of safety for ablation. Cavities were drilled in cadaver bovine bones and filled with a liver homogenate to simulate the tumour matrix. Temperature-sensing probes were placed in the bone in a radial fashion away from the cavities. RF ablation was performed 107 times in tumours < 10 mm in diameter (72 of which were in cortical bone, 35 in cancellous bone), and 41 times in cortical bone with models > 10 mm in diameter. Significantly higher temperatures were found in cancellous bone than in cortical bone (p <  0.05). For lesions up to 10 mm in diameter, in both bone types, the temperature varied directly with the size of the tumour (p < 0.05), and inversely with the distance from it. Tumours of > 10 mm in diameter showed a trend similar to those of smaller lesions. No temperature rise was seen beyond 12 mm from the edge of a cortical tumour of any size. Formulae were developed to predict the expected temperature in the bone during ablation.

Cite this article: Bone Joint J 2014; 96-B:677–83


Correspondence should be sent to Dr Med A. Greenberg; e-mail:

For access options please click here