header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

Hip

Backside volumetric change in the polyethylene of uncemented acetabular components



Download PDF

Abstract

Polyethylene wear of acetabular components is a key factor in the development of periprosthetic osteolysis and wear at the articular surface has been well documented and quantified, but fewer data are available about changes which occur at the backside of the liner.

At revision surgery for loosening of the femoral component we retrieved 35 conventional modular acetabular liners of the same design. Linear and volumetric articular wear, backside volumetric change and the volume of the screw-head indentations were quantified. These volumes, clinical data and the results from radiological Ein Bild Röntgen Analyse migration analysis were used to identify potential factors influencing the volumetric articular wear and backside volumetric change.

The rate of backside volumetric change was found to be 2.8% of the rate of volumetric articular wear and decreased with increasing liner size. Migrated acetabular components showed significantly higher rates of backside volumetric change plus screw-head indentations than those without migration.

The backside volumetric change was at least ten times larger than finite-element simulation had suggested. In a stable acetabular component with well-anchored screws, the amount of backside wear should not cause clinical problems. Impingement of the screw-heads could produce more wear particles than those generated at the liner-shell interface. Because the rate of backside volumetric change is only 2.8% of the rate of volumetric articular wear and since creep is likely to contribute a significant portion to this, the debris generated by wear at the backside of the liner may not be sufficient to create a strong osteolytic response.


Correspondence should be sent to Dr A. H. Krieg; e-mail: andreas.krieg@ukbb.ch

For access options please click here