header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

OSTEOBLAST APOPTOSIS IN ASEPTIC LOOSENING



Abstract

Aseptic loosening is the single most important long-term complication of total joint arthroplasty. Wear debris induced inflammation stimulates osteoclastic resorption of bone. Cellular mechanisms involved in osteoblast viability in PWD induced inflammation is poorly understood.

Wear induced inflammation increases osteoblast necrosis and susceptibility to death by apoptosis. PMMA cement has a detrimental effect on osteoblast resistance to apoptosis, and that this is via an receptor mediated pathway. Osteoblast cell cultures (Human and MG63) were grown with and without PMMA cement and assessed for apoptosis and necrosis. TNF-α or Fas antibody simulated inflammation. Viability and apoptosis with PI exclusion, flow cytometry and western blotting assessed response.

Cement induced osteoblast necrosis up to 1 hour. This effect was negated after 24 hours. Culture of osteob1asts on cement had no direct effect on spontaneous apoptosis but susceptibility to inflammation was increased.

Polymerised cement has no direct effect on osteoblast cell death. Effects are mediated by inhibiting expression of anti-apoptotic protein (Bcl-2), and increasing susceptibility to inflammatory. Osteoblast resistance to death may represent a novel and important factor in aseptic loosening. The role of gene therapy is explored.

The abstracts were prepared by Editorial Secretary Jean-Claude Theis. Correspondence should be addressed to NZOA at Department of Orthopaedic Surgery, Dunedin Hospital, Private Bag 1921, Dunedin, New Zealand.