header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

FEMORAL HEAD LATERAL EPIPHYSEAL ARTERY CONTRACTION ENHANCED BY LONG TERM METHYLPREDNISOLONE TREATMENT



Abstract

Introduction: In the pathogenesis of steroid-associated femoral head necrosis only intra- and extravascular factors have been discussed. This study investigated the effect of long term glucocorticoid treatment on contraction of intraosseous femoral head arteries in a porcine model.

Materials and Methods: From 24 immature female Danish Landrace pigs from 12 litters, 12 animals received 100 mg methylprednisolone daily for 3 months. Their 12 sister pigs served as controls and received no steroids. Resistance arteries (diameter approximately 250 μm) were isolated from the femoral head epiphyseal cancellous bone and mounted as ring preparations on a small vessel myograph for measurement of isometric force development.

Results: Increasing doses of endothelin-1 evoked significantly stronger vasoconstriction after 3 months of methylprednisolone treatment. The vasocontractory response to increasing doses of noradrenaline was not altered by the previous methylprednisolone treatment. After submaximal precontraction by noradrenaline, vasorelaxation by bradykinin was not altered by methylprednisolone treatment.

Discussion: The vasocontractory response of isolated intraosseous femoral head epiphyseal arteries to endothelin-1 after long term glucocorticoid treatment in the pig was enhanced. Enhanced contraction of FH lateral epiphyseal arteries can diminish femoral head blood flow as vessel diameter decreases. This may be a relevant cofactor in the early pathogenesis of steroid-associated femoral head necrosis.

Editorial Secretaries: Lynne C. Jones, Ph.D.* and Michael A. Mont, M.D. Address for Correspondence: *Lynne C. Jones, Ph.D., Suite 201 GSH POB, 5601 Loch Raven Blvd., Baltimore, MD 21239, USA. Email: ljones3@jhmi.edu