header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

INDEPENDENT ASSESSMENT OF PHYSICAL PROPERTIES OF SPINAL PEDICLE SCREWS



Abstract

Many pedicle screw instrumentation systems are currently available to the spine surgeon. Each system has its unique characteristics. It is important for the surgeon to understand the differences in these pedicle screw systems1

Following the introduction of a new spinal instrumentation set to our clinical practice we encountered two cases of pedicle screw breakage. We thus decided to investigate the mechanism of this screw failure (screw A) in these particular cases and to compare the biomechanical properties, through independent analysis, of a variety of pedicle screws from different manufacturers.

Samples of the broken pedicle screws were retrieved at surgery. Surface analysis of the fracture area using the electron microscope, demonstrated features consistent with fatigue fracture.

Pedicle screws of comparable size from a variety of manufacturers were gathered for independent analysis. Shadowgraph analysis was performed of each screw allowing multiple measurements to be taken of the screw’s geometry. Using this data stress concentration factors were determined demonstrating screw A to have larger values than all the other screws ranging from 2 – 3.6 times the nominal stress. The smaller teeth of screw A, spaced further apart than in the other screws, means that the large proportion of the load which would be carried by the threads is distributed over a smaller area resulting in higher stresses in the threads. The sharp corner at the root of the thread, acting as a stress concentrator, would become the focal point of these high stresses, and magnify them by 2 to 3.6 times.

These increased stresses most likely account for an increased susceptibility to fatigue fracture seen in screw A.

In conclusion it is important to be careful with the introduction and use of new pedicle screw materials and designs, that all the standard biomechanical testing has been performed to a satisfactory standard.

Knowing the physical characteristics of the available pedicle screw instrumentation systems may allow the choice of pedicle screw best suited for a given clinical situation.

The abstracts were prepared by Emer Agnew, Secretary to the IOA. Correspondence should be addressed to him at Irish Orthopaedic Association Secretariat, c/o Cappagh National Orthopaedic Hospital, Finglas, Dublin 11, Ireland.