header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

HYBRID BIOMATERIAL GRAFT SEEDED WITH BONE STEM CELLS



Abstract

Purpose: Filling bone defects is a major challenge in orthopaedic surgery. One of the therapeutical alternatives to combined autologous bone grafts and bone substitutes is to use a biomaterial carrying bone stem cells. The purpose of this study was to test a hybrid biomaterial in a major bone loss model in the rabbit.

Material and methods: The study material was the AN 69 hydrogel (Hospal). Twenty-four rabbits were divided into four identical groups of six individuals. Each animal underwent a unilateral resection measuring 2 cm in the mid third of the cubitus: group 1 simple resection; group 2 resection and centromedullary pin; group 3 resection, centromedullary pin and biomaterial; group 4 resection, centromedullary pin, biomaterial with bone marrow stem cells. Animal were sacrificed at six weeks. A radiograph was obtained immediately after surgery and at sacrifice. The study parameters were: new bone formation, bone healing, bone remodelling. Each criteria was assessed with a mean score (Werntz score). A pathology examination was performed in all cases to study new bone formation, polylmere degradation and inflammation.

Results: The overall radiographic score was group 1 = 2, group 2 = 8, group 3 = 24, group 4 = 42 for a maximum 62 points. Histologically, there was nonunion after simple pinning with formation of a defective callus. The nonunion persisted after pinning and hydrogel without cell seeding. New bone formation was moderate and predominated on the borders of the bone resection. After pinning associated with cell seeded hydrogel, an osteogenic lamina arose from the hydrogel network. This osteogenesis was continuous with osteogenesis originating from the bone section cut.

Discussion: These findings demonstrate that associated a hydrogel with bone stem cells can produce more significant bone formation than in controls, confirming the animal model. Treatment of major bone loss and aseptic osteonecrosis after curettage could be proposed with this new biomaterial combining a hydrogel and CD34+ stem cells in humans.

The abstracts were prepared by Pr. Jean-Pierre Courpied (General Secretary). Correspondence should be addressed to him at SOFCOT, 56 rue Boissonade, 75014 Paris, France