header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

PROSPECTIVE DUAL ENERGY X-RAY ABSORPTIOMETRY (DEXA) OF PERIPROSTHETIC BONE DENSITY IN TWO SERIES OF CEMENTED OR NON-CEMENTED TOTAL HIP ARTHROPLASTIES: 47 CASES WITH AT LEAST THREE YEARS FOLLOW-UP



Abstract

Purpose: With appropriate software, dual energy x-ray absorptiometry (DEXA) provides a means of measuring periprosthetic bone mineral density (BMD) reliably and reproducibly in a single plane. The current method has been improved since the first reports by MacCarthy in 1991.

Material and methods: Since 1992, two series of total hip arthroplasty femoral prostheses using a ceramic-polyethylene cup with a TA6V4 stem were implanted with cement (group A 25 SAS crystal anatomic stems, 22.2 head) or without cement (group B, 27 Euroform stems with hydroxyapatite surfacing on the upper 2/5, 28 head). The patients were followed prospectively with DEXA to measure BMD in the seven Gruen zones immediately after surgery, at six and twelve months, then every year to last follow-up. Mean follow-up was 74 months (36–166). A visual analogue scale was used for subjective assessment of pain. The clinical Harris score and radiological findings were also recorded.

Results: At last follow-up none of the prostheses had required revision surgery. The Harris score was greater than 90 for both groups (mean 91.4 and 95.4 for groups A and B respectively). Radiologically, there were no progressive lucent lines in the two groups but there were three stable lines (zone V, VII, VII, II) without clinical expression in group A and two (zone II, I) with persistent thigh pain in group B. Two migrations of less than 3 mm were also found in group A and four of more than 3 mm in group B. For the two groups, DEXA showed a diffuse reduction in BMD during the first six months that was statistically significant only for zones I and VII for the Euroform implant and for zone VII for the SAS Crystal implant. There was also a significant difference between the two prostheses for zone I. Modifications were not significant at three years and a last follow-up for the distal regions (II, II, V, VI). For group A (SAS Crystal), the reduction was 5.8% at three years and 5.7% at last follow-up for zone I and 18% at three years and 19% at last follow-up for zone VII. For group B, the reduction was 12.6 at three years and 11.4% at last follow-up for zone I and 17.4% at three years and 21.3% at last follow-up for zone VII.

Discussion: The correlations showed that variations in BMD were independent of the initial bone mineral content, patient age or sex, and were not significantly different between the two cemented or non-cemented implants. Patients with painful thighs (two in group A and six in group B) had a different pattern of BMD over time, showing less pronounced reduction in the proximal zones I and VII and marked bone resorption in zones III and V, an expression of different stress transmission.

Conclusion: This study provided the longest longitudinal radiological and clinical follow-up reported in the literature which, despite the bias introduced by the different types of implants, shows the reliability and reproducibility of DEXA of periprosthetic bone mineral density used to assess implant tolerance and quality of cementing.

The abstracts were prepared by Pr. Jean-Pierre Courpied (General Secretary). Correspondence should be addressed to him at SOFCOT, 56 rue Boissonade, 75014 Paris, France