header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Volume 102-B, Issue SUPP_2 February 2020 International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 2 of 2.

C. Plaskos E. Wakelin S. Shalhoub J. Lawrence J. Keggi J.A. Koenig C.E. Ponder A. Randall J. DeClaire

Introduction

Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability.

Measured resection TKA approaches typically rely on making bone cuts based off of generic alignment strategies and then releasing soft tissue afterwards to balance gaps. Conversely, gap-balancing techniques allow for pre-emptive adjustment of bone resections to achieve knee balance thereby potentially reducing the amount of ligament releases required. No study to our knowledge has compared the rates of soft tissue release in these two techniques, however. The objective of this study was, therefore, to compare the rates of soft tissue releases required to achieve a balanced knee in tibial-first gap-balancing versus femur-first measured-resection techniques in robotic assisted TKA, and to compare with release rates reported in the literature for conventional, measured resection TKA [1].

Methods

The number and type of soft tissue releases were documented and reviewed in 615 robotic-assisted gap-balancing and 76 robotic-assisted measured-resection TKAs as part of a multicenter study. In the robotic-assisted gap balancing group, a robotic tensioner was inserted into the knee after the tibial resection and the soft tissue envelope was characterized throughout flexion under computer-controlled tension (fig-1). Femoral bone resections were then planned using predictive ligament balance gap profiles throughout the range of motion (fig-2), and executed with a miniature robotic cutting-guide. Soft tissue releases were stratified as a function of the coronal deformity relative to the mechanical axis (varus knees: >1° varus; valgus knees: >1°). Rates of releases were compared between the two groups and to the literature data using the Fischer's exact test.


T. Turgeon C. Burnell D. Hedden T. Gascoyne E. Bohm

Introduction

Total hip arthroplasty (THA) is a highly successful procedure achieving excellent clinical outcomes beyond 10 years post-surgery. With exception of periprosthetic infection, dislocation is the most common cause of failure in THA. A novel reverse total hip (RTH) replacement has been developed to address dislocation through reversal of the typical THA articulation in which a femoral cup and acetabular ball interlock at the extremes of motion to enhance mechanical stability in all planes. The purpose of this study was to assess the safety and efficacy of this novel RTH in a series of 22 patients and to monitor implant fixation using radiostereometric analysis (RSA).

Methods

Twenty two patients with end-stage osteoarthritis of the hip were enrolled between 2017 and 2019 at a single center. All surgeries were performed by a group of four high-volume fellowship-trained arthroplasty surgeons. All patients received at least 1 acetabular cup screw and RSA markers inserted into the acetabulum and proximal femur. Follow-up time points were 6 weeks, 6, 12 and 24 months and included patient reported outcome measures (HOOS, Oxford-12, Harris Hip Score, SF-36 and Satisfaction) as well as RSA assessment.


M. Hartwell R. Harold P. Sweeney G. Marra M. Saltzman

Background

Rotator cuff atrophy evaluated with computed tomography scans has been associated with asymmetric glenoid wear and humeral head subluxation in glenohumeral arthritis. Magnetic resonance imaging has increased sensitivity for identifying rotator cuff pathology and has not been used to investigate this relationship. The purpose of this study was to use MRI to assess the association of rotator cuff muscle atrophy and glenoid morphology in primary glenohumeral arthritis.

Methods

132 shoulders from 129 patients with primary GHOA were retrospectively reviewed and basic demographic information was collected. All patients had MRIs that included appropriate orthogonal imaging to assess glenoid morphology and rotator cuff pathology and were reviewed by two senior surgeons. All patients had intact rotator cuff tendons. Glenoid morphology was assigned using the modified-Walch classification system (types A1, A2, B1, B2, B3, C, and D) and rotator cuff fatty infiltration was assigned using Goutallier scores.


A. Kadado K. Bober C. Yu N. Akioyamen T. North M. Charters

Introduction

Postoperative nausea and vomiting (PONV) is a common occurrence following total joint arthroplasty, and can result in patient discomfort, delayed discharge, and decreased patient satisfaction. Carbohydrate loading as part of the Enhanced Recovery after Surgery (ERAS) protocol has gained popularity, and has been shown to minimize postoperative nausea, vomiting, pain, and lead to accelerated recovery and better overall outcome following abdominal surgery. This study aims to investigate the effects of preoperative carbohydrate-rich drinks on PONV following primary total knee arthroplasty (TKA).

Methods

Patients undergoing primary TKA at one institution were enrolled randomly assigned to one of three groups: Group 1 received preoperative carbohydrate-rich drink, Group 2 received placebo water drink of similar appearance and taste, and Group 3 did not receive a drink (control). All healthcare personnel and patients (group 1 and 2) were blinded to group allocation. We compared rate of postoperative nausea, vomiting, length of stay (LOS), and opiate consumption (morphine equivalents, meq). We also reviewed visual analog scale (VAS) pain scores and serum glucose at 0–4 hours, 4–12 hours, and 12–24 hours postoperatively.


W. Burton C. Myers P. Rullkoetter

Introduction

Gait laboratory measurement of whole-body kinematics and ground reaction forces during a wide range of activities is frequently performed in joint replacement patient diagnosis, monitoring, and rehabilitation programs. These data are commonly processed in musculoskeletal modeling platforms such as OpenSim and Anybody to estimate muscle and joint reaction forces during activity. However, the processing required to obtain musculoskeletal estimates can be time consuming, requires significant expertise, and thus seriously limits the patient populations studied. Accordingly, the purpose of this study was to evaluate the potential of deep learning methods for estimating muscle and joint reaction forces over time given kinematic data, height, weight, and ground reaction forces for total knee replacement (TKR) patients performing activities of daily living (ADLs).

Methods

70 TKR patients were fitted with 32 reflective markers used to define anatomical landmarks for 3D motion capture. Patients were instructed to perform a range of tasks including gait, step-down and sit-to-stand. Gait was performed at a self-selected pace, step down from an 8” step height, and sit-to-stand using a chair height of 17”. Tasks were performed over a force platform while force data was collected at 2000 Hz and a 14 camera motion capture system collected at 100 Hz. The resulting data was processed in OpenSim to estimate joint reaction and muscle forces in the hip and knee using static optimization. The full set of data consisted of 135 instances from 70 patients with 63 sit-to-stands, 15 right-sided step downs, 14 left-sided step downs, and 43 gait sequences. Two classes of neural networks (NNs), a recurrent neural network (RNN) and temporal convolutional neural network (TCN), were trained to predict activity classification from joint angle, ground reaction force, and anthropometrics. The NNs were trained to predict muscle and joint reaction forces over time from the same input metrics. The 135 instances were split into 100 instances for training, 15 for validation, and 20 for testing.


W. Burton C. Myers P. Rullkoetter

Introduction

Real-time tracking of surgical tools has applications for assessment of surgical skill and OR workflow. Accordingly, efforts have been devoted to the development of low-cost systems that track the location of surgical tools in real-time without significant augmentation to the tools themselves. Deep learning methodologies have recently shown success in a multitude of computer vision tasks, including object detection, and thus show potential for the application of surgical tool tracking. The objective of the current study was to develop and evaluate a deep learning-based computer vision system using a single camera for the detection and pose estimation of multiple surgical tools routinely used in both knee and hip arthroplasty.

Methods

A computer vision system was developed for the detection and 6-DoF pose estimation of two surgical tools (mallet and broach handle) using only RGB camera frames. The deep learning approach consisted of a single convolutional neural network (CNN) for object detection and semantic key point prediction, as well as an optimization step to place prior known geometries into the local camera coordinate system. Inference on a camera frame with size of 256-by-352 took 0.3 seconds. The object detection component of the system was evaluated on a manually-annotated stream of video frames. The accuracy of the system was evaluated by comparing pose (position and orientation) estimation of a tool with the ground truth pose as determined using three retroreflective markers placed on each tool and a 14 camera motion capture system (Vicon, Centennial CO). Markers placed on the tool were transformed into the local camera coordinate system and compared to estimated location.


E. Wakelin S. Shalhoub J. Lawrence J. DeClaire J.A. Koenig C.E. Ponder A. Randall J. Keggi C. Plaskos

Introduction

Achieving a well-balanced midflexion and flexion soft tissue envelope is a major goal in Total Knee Arthroplasty (TKA). The definition of soft tissue balance that results in optimal outcomes, however, is not well understood. Studies have investigated the native soft tissue envelope in cadaveric specimen and have shown loosening of the knee in flexion, particularly on the lateral side. These methods however do not reflect the post TKA environment, are invasive, and not appropriate for intra-operative use. This study utilizes a digital gap measuring tool to investigate the impact of soft tissue balance in midflexion and flexion on post-operative pain.

Methods

A prospective multicenter multi-surgeon study was performed in which patients underwent TKA with a dynamic ligament-balancing tool in combination with a robotic-assisted navigation platform. All surgeries were performed with APEX implants (Corin Ltd., USA) using a variety of tibia and femur first techniques. Gap measurements were acquired under load (average 80 N) throughout the range of motion during trialing with the balancing tool inserted in place of the tibial trial. Patients completed KOOS pain questionnaires at 3months±2weeks post-op. Linear correlations were investigated between KOOS pain and coronal gap measurements in midflexion (30°–60°) and flexion (>70°). T-tests were used to compare outcomes between categorical data.


J.Y. Lazennec Y.W. Kim D. Folinais A. Eslam Pour

Introduction

Post op cup anatomical and functional orientation is a key point in THP patients regarding instability and wear. Recently literature has been focused on the consequences of the transition from standing to sitting regarding anteversion, frontal and sagittal inclination. Pelvic incidence (PI) is now considered as a key parameter for the analysis of sagittal balance and sacral slope (SS) orientation. It's influence on THP biomechanics has been suggested. Interestingly, the potential impact of this morphological angle on cup implantation during surgery and the side effects on post op functional orientation have not been studied.

Our study explores this topic from a series of standing and sitting post-op EOS images

Material and methods

310 patients (mean age 63,8, mean BMI 30,2) have been included prospectively in our current post-operative EOS protocol. All patients were operated with the same implants and technique using anterior approach in lateral decubitus.

According to previous literature, 3 groups were defined: low PI less than 45° (57 cases), high PI if more than 60° (63 cases), and standard PI in 190 other cases.


B. Stulberg J. Zadzilka S.W. Kreuzer W. Long Y. Kissin R.A. Liebelt V. Campanelli J. Zuhars

Introduction

Active robotics for total knee Arthroplasty (TKA) uses a CAD-CAM approach to plan the correct size and placement of implants and to surgically achieve planned limb alignment. The TSolution One Total Knee Application (THINK Surgical Inc., Fremont, CA) is an open-implant platform, CT-based active robotic surgical system. A multi-center, prospective, non-randomized clinical trial was performed to evaluate safety and effectiveness of robotic-assisted TKA using the TSolution One Total Knee Application. This report details the findings from the IDE.

Methods

Patients had to be ≥ 21 years old with BMI ≤ 40, Kellgren-Lawrence Grade ≥ 3, coronal deformity ≤ 20°, and sagital flexion contracture ≤ 15° to participate. In addition to monitoring all adverse events (AE), a pre-defined list of relevant major AEs (medial collateral ligament injury, extensor mechanism disruption, neural deficit, periprosthetic fracture, patellofemoral dislocation, tibiofemoral dislocation, vascular injury) were specifically identified to evaluate safety. Bleeding complications were also assessed. Malalignment rate, defined as the percentage of patients with more than a ± 3° difference in varus-valgus alignment from the preoperative plan, was used to determine accuracy of the active robotic system. Knee Society Scores (KSS) and Short Form 12 (SF-12) Health Surveys were assessed as clinical outcome measures. Results were compared to published values associated with manual TKA.


N. Haffner V. Auersperg S. Mercer M. Koenigshofer H. Rattinger P. Ritschl

INTRODUCTION

Cementless femoral component designs supplemented with hydroxyapatite (HA) coating have been hypothesised to enhance osseointegration, thereby improving stability and clinical outcomes. We herein offer interim results at 5 years from a prospective, multi-centre study of a femoral stem (SL-PLUS™ Hip Stem Prosthesis), forged from titanium alloy (Ti6Al7Nb) and consisting of a titanium plasma sprayed coating (0.3mm) with an additional 0.05mm layer of HA.

METHODS

Investigators at 2 centres enrolled patients between 18–75 years of age who underwent primary total hip arthroplasty (THA) with this HA-coated stem. The study's primary outcome was the clinical efficacy of the stem, as measured by the Harris Hip Score (HHS), Western Ontario & McMaster Universities Osteoarthritis (WOMAC) Score calculated out of Hip Disability and Osteoarthritis Outcome Score (HOOS), and the EuroQol EQ-5D-3L index score and visual analogue scale (VAS). Its secondary outcomes included a radiographic assessment of implant position and fixation, and overall safety, as measured by intraoperative/early postoperative complications and survivorship calculated using Kaplan-Meier estimates.


M. Ruhr V. Polster M. Morlock

INTRODUCTION

Precise determination of material loss is essential for failure analysis of retrieved hip cups. To determine wear, the measured geometry of the retrieval hast to be compared to its pristine geometry, which usually is not available. There are different approaches to generate reference geometries to approximate the pristine geometry that is commonly assumed as sphere. However, the geometry of press fit cup retrievals might not be spherical due to deformation caused by excessive press-fitting. The effect of three different reference geometries on the determined wear patterns and material loss of pristine and worn uncemented metal-on-metal hip cups was determined.

METHODS

The surfaces of two cups (ASR, DePuy, Leeds; one pristine, one a worn retrieval) were digitized using a coordinate measurement machine (CRYSTA-Apex S574, Mitutoyo; 3 µm accuracy). Both cups were measured undeformed and while being deformed between a clamp. Three different methods for generating reference geometries were investigated (PolyWorks|Inspector 2018, InnovMetric). Method 1: A sphere with the nominal internal cup dimensions was generated. Method 2: A sphere was fitted to the measured data points after removing those from worn areas (deviation > 3 µm is defined as wear) to eliminate the influence of manufacturing tolerances on the nominal diameter. Method 3: Measurements, which displayed visual deformation in the computed wear pattern based on the best fit sphere, were fitted with an ellipsoid. The direction of the deformation axes and the amount of deformation were used to scale the best fit ellipsoid. Linear wear was calculated from the distance of the respective reference geometry to the measured point cloud. Finally, material loss is defined as the difference in volume of the reference geometry and the measured geometry.


C. King M. Jordan J. Edgington C. Wlodarski A. Tauchen L. Puri

Introduction

This study sought to evaluate the patient experience and short-term clinical outcomes associated with the hospital stay of patients who underwent robotic arm-assisted total knee arthroplasty (TKA). These results were compared to a cohort of patients who underwent TKA without robotic assistance performed by the same surgeon.

Methods

A cohort of consecutive patients undergoing primary TKA for the diagnosis of osteoarthritis by a single fellowship trained orthopaedic surgeon over a 39-month period was identified. Patients who underwent TKA during the year this surgeon transitioned his entire knee arthroplasty practice to robotic assistance were excluded to eliminate selection bias and control for the learning curve. A final population of 538 TKAs was identified. Of these, 314 underwent TKA without robotic assistance and 224 underwent robotic arm-assisted TKA. All patients received the same prosthesis and post-operative pain protocol. Patient demographic characteristics and short-term clinical data were analyzed.


S. Tanaka K. Tei M. Minoda S. Matsuda K. Takayama T. Matsumoto R. Kuroda

Introduction

Acquiring adaptive soft-tissue balance is one of the most important factors in total knee arthroplasty (TKA). However, there have been few reports regarding to alteration of tolerability of varus/valgus stress between before and after TKA. In particular, there is no enough data about mid-flexion stability. Based on these backgrounds, it is hypothesized that alteration of varus/valgus tolerance may influence post-operative results in TKA. The purpose of this study is an investigation of in vivo kinematic analyses of tolerability of varus/valgus stress before and after TKA, comparing to clinical results.

Materials and Methods

A hundred knees of 88 consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. The kinematic parameters of the soft-tissue balance, and amount of coronal relative movement between femur and tibia were obtained by interpreting kinematics, which display graphs throughout the range of motion (ROM) in the navigation system. Femoro-tibial alignments were recorded under the stress of varus and valgus before the procedure and after implantation of all components. In each ROM (0, 30, 60, 90, 120 degrees), the data of coronal relative movement between femur and tibia (tolerability) were analyzed before and after implantation. Furthermore, correlations between tolerability of varus/valgus and clinical improvement revealed by ROM and Knee society score (KSS) were analyzed by logistic regression analysis.


M. Munford U. Hossain J. Jeffers

Introduction

Integrating additively manufactured structures, such as porous lattices into implants has numerous potential benefits, such as custom mechanical properties, porosity for osseointegration/fluid flow as well as improved fixation features.

Component anisotropic stiffness can be controlled through varying density and lattice orientation. This is useful due to the influence of load on bone remodelling. Matching implant and bone anisotropy/stiffness may help reduce problems such as stress shielding and prevent implant loosening. It is therefore beneficial to be able to design AM parts with a desired anisotropic stiffness.

In this study we present a method that predicts the anisotropic stiffness of an additively manufactured lattice structure from its CAD data, and validate this model with experimental testing. The model predicts anisotropic stiffness in terms of density (ρ), fabric (M) and fabric eigen values (m) and is matched to stiffness data of the structure in 3 principal directions, based on an orthotropic assumption. This model was described in terms of 10 constants and had the form shown in Equation 1.

S = i , j = 1 i , j = 3 λ ( i , j ) ρ k m ( i ) 1 ( i ) m ( j ) 1 ( i ) | M i M j ' | 2

Methods

A stochastic line structure was formed in CAD by joining pseudo-random points generated using the Poisson-disk method Lines at an angle lower than 30° to the x-y plane removed to allow for AM manufacturing. Lines were converted to struts with 330 µm diameter.

Second order fabric tensors were determined from CAD files of the AM specimens using the mean intercept length (MIL), the gold standard for determining a measure of the ‘average orientation’ of material within trabecular bone structures.

10 × 10 × 12 mm specimens of the CAD model were manufactured on a Renishaw AM250 powder bed fusion machine. The structure was built in 10 different orientations to enable stiffness measurement in 10 different directions (n=5 for each direction). Compression testing in a servohydraulic materials testing machine was performed according to ISO13314 with LVDTs used to measure displacement to remove compliance effects. Stress-strain curves were obtained and elastic moduli were estimated from a hysteresis loop in the load application, from 70% to 20% of the plateau stress.

Specimen density and fabric data were fit to the observed stiffnesses using least squares linear regression. Experimental stiffnesses of the structure in 10 directions were compared to the model to evaluate the accuracy of model predictions.


G. Coden T. Moore S. Hushmendy M.S. Hepinstall

Introduction

Cementless acetabular fixation in total hip replacement (THA) is reliable and has been the fixation method of choice in the United States for decades. While revision for failure of osseointegration or early loosening is relatively rare, recurrent dislocation remains a leading cause of early revision. Novel acetabular implants and those offered by smaller companies often lack constrained or dual mobility liners, which may result in revision of well-fixed, well-positioned cups in cases of recurrent dislocation.

The purpose of this study was to compare outcomes of THA with three different acetabular cups with differing fixation surfaces. One hydroxyapatite (HA)-coated cup (Trident, Stryker, Kalamazoo, MI, USA) offered dual mobility or constrained liner options. The other cups were a novel highly porous cup (Restoris PST, Stryker, Kalamazoo, MI, USA), and a Calcium Phosphate (CaP)-coated cup (Trinity, Corin, Cirincester, UK), neither of which offered dual mobility or constrained options at the time of investigation. Endpoints of interest were: clinical and radiographic outcomes including evidence of osseointegration, overall reoperations, reoperations for acetabular fixation failure, and reoperations to address dislocation in which a well-positioned shell was revised due to the lack of dual mobility or constrained options.

Methods

A retrospective review of 370 acetabular cups implanted in 328 patients for THA by a single surgeon between February 2013 and June 2016 was performed. There were 100 Trident cups (Stryker, Kalamazoo, MI, USA), 105 Restoris PST Acetabular Cups (Stryker, Kalamazoo, MI, USA), and 165 Trinity Acetabular Cups (Corin, Cirincester, UK). Patient records were reviewed for post-operative complications, clinical outcomes scores and radiographic signs of acetabular osseointegration at minimum 1-year follow-up.


L. Dagneaux G. Karl E. Michel F. Canovas C. Rivière

Introduction

The constitutional knee anatomy in the coronal plane includes the distal femoral joint line obliquity (DFJLO) which in most patients is in slight valgus positioning. Despite this native anatomy, the mechanical positioning of the femoral component during primary total knee arthroplasty (TKA) often ignores the native DFJLO opting to place the femur in a set degree of valgus that varies upon the practitioner's practice and experience. Unfortunately, this technique is likely to generate high rate of distal lateral femoral overstuffing. This anatomical mismatch might be a cause of anterior knee pain and therefore partly explain the adverse functional outcomes of mechanically aligned (MA) TKA. Our study aims at assessing the relationship between constitutional knee anatomy and clinical outcomes of MA TKA. We hypothesized that a negative relationship would be found between the constitutional frontal knee deformity, the distal femoral joint line obliquity, and functional outcomes of MA TKA with a special emphasize on patellofemoral (PF) specific outcomes.

Methods

One hundred and thirteen patients underwent MA TKA (posterior-stabilized design) for primary end-stage knee osteoarthritis. They were prospectively followed for one year using the New KSS 2011 and HSS Patella score. Residual anterior knee pain was also assessed. Knee phenotypes using anatomical parameters (such as HKA, HKS, DFJLO and LDFA (Lateral distal femoral angle)) were measured from preoperative and postoperative lower-limb EOS® images (Biospace, Paris, France). We assessed the relationship between the knee anatomical parameters and the functional outcome scores at 1 year postoperatively.


A. Fattori N. Del Negro K. Gunsallus J. Lipman R. Hotchkiss M.P. Figgie T. Wright M. Pressacco

Introduction

Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the modular connections introduce however additional risks in terms of both mechanical strength and potential fatigue and fretting phenomena that may arise not only due to low demand activities loads, but also high demand (HD) ones that could be even more detrimental. The aim of this study was to assess the strength of the modular connection between the axle and the ulnar component in a novel convertible elbow prosthesis design under simulated HD and activities of daily living (ADLs) loading.

Methods

A novel convertible total elbow prosthesis (LimaCorporate, IT) comprising both ulnar and humeral components that can be linked together by means of an axle, was used. Both typical ADLs and HD torques to be applied to the axle were determined based on finite element analysis (FEA); the boundary load conditions for the FEA were determined based on kinematics analysis on real patients in previous studies. The FEA resultant moment acting on the axle junction during typical ADLs (i.e. feeding with 7.2lbs weight in hand) was 3.2Nm while for HD loads (i.e. sit to stand) was 5.7 Nm. In the experimental setup, 5 axle specimens coupled with 5 ulnar bodies through a tapered connection (5 Nm assembly torque) were fixed to a torque actuator (MTS Bionix) and submerged in a saline solution (9g/l). A moment of 3.2 Nm was applied to the axle for 5M cycles through a fixture to test it under ADLs loading. After 5M cycles, the axles were analyzed with regards to fretting behavior and then re-assembled to test them against HD loading by applying 5.7 Nm for 200K cycles (corresponding to 20 years function).


C. Rivière A. Jain C. Harman C. Maillot T. Parsons

Introduction

The alternative kinematic alignment (KA) technique for total knee arthroplasty (TKA) aims at restoring the native joint line orientation and laxity of the knee. The goal is to generate a more physiological prosthetic knee enabling higher functional performance and satisfaction for the patient. KA TKA have only been reported so far with cruciate retaining and posterior-stabilised designs. Similarly, medial pivot design for TKA has been recently developed to enable more natural knee kinematics and antero-posterior stability. The superiority of KA technique and medial pivot implant design is still controversial when compared to current practice. Our study aims to assess the value of KA TKA when performed with medial pivot implants.

Methods

We conducted a retrospectively matched case-control study. Clinical data was prospectively collected on patients as part of an ongoing ODEP study. Thirty-three non-selected consecutive KA TKAs performed by the lead author were matched to a control group of 33 measured resection with mechanically aligned (MA) TKAs performed by other consultant surgeons. Patients were matched for sex, age, BMI and pre-operative Oxford Knee Score (OKS). Pre-operative median OKS was 21 points (max 48), mean age was 69, mean BMI 31, and there were 21 female patients in both arms. The medial pivot GMK Sphere implant (Medacta, Switzerland) was used in all cases. OKS and EQ-5D scores were measured pre-operatively and at 1-year post-op. Patient outcome satisfaction scores were assessed at 1-year follow-up using a visual analogic scale (VAS). Pre- and post-operative knee radiographs were analysed using TraumaCad software.


J. Simon H. Lundberg C. Della Valle M. Wimmer

Introduction

Studies have shown that increased implant conformity in total knee arthroplasty (TKA) has been linked to increased constraint and thus rotational torque at the bone/implant interface. Anterior stabilized (AS) tibial inserts were designed to compensate for excessive AP motion in less-conforming cruciate-retaining (CR) tibial inserts. However, increased constraint may affect implant loading. Therefore, the purpose of this study is to model rotational prosthesis constraint based on implant-specific data and to compare rotational torque and 3D contact forces in implants with CR-lipped and AS tibial inserts during normal gait.

Methods

A previously reported knee joint contact model was updated to include rotational torque due to prosthesis constraint (ASTM F1223(14)). Piecewise multiple linear regression with manually selected cutoff points was used to determine estimates of AP force, ML force, and rotation torque as functions of AP displacement, ML displacement, knee external rotation, respectively, and knee flexion angle from standard data. These functions were used to estimate total moment contribution of the prosthesis from measured knee displacement/rotation angles. Estimates were incorporated into the contact model equilibrium equations as needed by the model. As the model parametrically varies muscle activation coefficients to solve for the range of physiologically possible forces at each time point, the reported force/torque values are the mean across all solutions at each time point. Rotational torque and three dimensional contact forces were calculated for 14 informed-consented subjects, five with AS tibial inserts (1/4 m/f, 67±10 years, 29.2±4.4 BMI, 1/4 right/left) and nine with CR-lipped TKRs (2/7 m/f, 64±6 years, 30.6±5.8 BMI, 4/5 right/left). Rotational torque waveforms were compared using statistical nonparametric mapping; 3D contact forces were compared at mean timing of the flexion/extension moment peaks using independent samples t-tests.


J.K. Mueller J. Bischoff E. Siggelkow C. Parduhn B. Roach N. Drury M. Bandi

Introduction

Initial stability of cementless total knee arthroplasty (TKA) tibial trays is necessary to facilitate biological fixation. Previous experimental and computational studies describe a dynamic loading micromotion test used to evaluate the initial stability of a design. Experimental tests were focused on cruciate retaining (CR) designs and walking gait loading. A FEA computational study of various constraints and activities found CR designs during walking gait experienced the greatest micromotion. This experimental study is a continuation of testing performed on CR and walking gait to include a PS design and stair descent activity.

Methods

The previously described experimental method employed robotic loading informed by a custom computational model of the knee. Different TKA designs were virtually implanted into a specimen specific model of the knee. Activities were simulated using in-vivo loading profiles from instrumented tibia implants. The calculated loads on the tibia were applied in a robotic test. Anatomically designed cementless tibia components were implanted into a bone surrogate. Micromotion of the tray relative to the bone was measured using digital image correlation at 10 locations around the tray.

Three PS and three CR samples were dynamically loaded with their respective femur components with force and moment profiles simulating walking gait and stair descent activities. Periods of walking and stair descent cycles were alternated for a total of 2500 walking cycles and 180 stair descent cycles. Micromotion data was collected intermittently throughout the test and the overall 3D motion during a particular cycle calculated. The data was normalized to the maximum micromotion value measured throughout the test. The experimental data was evaluated against previously reported computational finite element model of the micromotion test.


J. DeClaire J. Lawrence J. Keggi A. Randall C.E. Ponder J.A. Koenig S. Shalhoub E. Wakelin C. Plaskos

Background

Achieving good ligament balance in total knee arthroplasty (TKA) is essential to prevent early failure and revision surgery. Poor balance and instability are well-defined, however, an ideal ligament balance target across all patients is not well-understood. In this study we investigate the achieved ligament balance using an imageless, intra-operative dynamic balancing tool and its relation to patient reported outcomes.

Methods

A prospective, multi-surgeon, multi-center study investigated the use of a dynamic ligament-balancing tool in combination with a robotic-assisted navigation platform using the APEX knee (OMNI-Corin, Raynham MA). After all resections, the femoral trial and a computer-controlled tensioning device in place of the tibial tray was inserted into the knee joint. The difference in medial and lateral (ML) gaps when balancing the knee under constant load at extension (10°), mid-flexion (30°) and flexion (90°) was captured. Patients completed the KOOS questionnaire at 3 months ± 2 weeks post-surgery and considered the past 7 days as a timeframe for responses. Pearson's correlation was used to determine linear correlations between factors and ANOVA tests were used to determine differences in categorical data.


J. Lawrence J. Keggi A. Randall J. DeClaire C.E. Ponder J.A. Koenig S. Shalhoub E. Wakelin C. Plaskos

Introduction

Soft-tissue balancing methods in TKA have evolved from surgeon feel to digital load-sensing tools. Such techniques allow surgeons to assess the soft-tissue envelope after bone cuts, however, these approaches are ‘after-the-fact’ and require soft-tissue release or bony re-cuts to achieve final balance. Recently, a robotic ligament tensioning device has been deployed which characterizes the soft tissue envelope through a continuous range-of-motion after just the initial tibial cut, allowing for virtual femoral resection planning to achieve a targeted gap profile throughout the range of flexion (figure-1). This study reports the first early clinical results and patient reported outcomes (PROMs) associated with this new technique and compares the outcomes with registry data.

Methods

Since November 2017, 314 patients were prospectively enrolled and underwent robotic-assisted TKA using this surgical technique (mean age: 66.2 ±8.1; females: 173; BMI: 31.4±5.3). KOOS/WOMAC, UCLA, and HSS-Patient Satisfaction scores were collected pre- and post-operatively. Three, six, and twelve-month assessments were completed by 202, 141, and 63 patients, respectively, and compared to registry data from the Shared Ortech Aggregated Repository (SOAR). SOAR is a TJA PROM repository run by Ortech, an independent clinical data collection entity, and it includes data from thousands of TKAs from a diverse cross-section of participating hospitals, teaching institutions and clinics across the United States and Canada who collect outcomes data. PROMs were compared using a two-tailed t-test for non-equal variance.


S. Yasuda S. Weiqi T. Sugino U. Keita N. Tomita

Introduction

Aseptic loosening is a major cause of revision of total joint arthroplasty (TJA). Although crosslinked Ultra-high molecular weight polyethylene (UHMWPE) have improved wear resistance, residual radicals remaining in the material have a possibility to increase bio-reactivity of particles [2]. In this study, we attempt to evaluate the effects of irradiation and residual radicals on bio-reactivity of the material with a new method called the inverse culture method [1].

Material and methods

UHMWPE particles (10µm diameter in average, Mitsui chemicals Co., LTD) along with irradiated particles (RAD, 300kGy electron irradiation) and particles annealed after the irradiation (RAD+ANN, 100°C 72 hours) are co-incubated with mouse macrophage cell line RAW264 using the inverse culture method. The amount of TNF-α was measured with ELISA.


L. Walter C. Madurawe Y. Gu J. Pierrepont

The functional pelvic tilt when standing and sitting forward of 7402 cases on the OPS, Optimized Ortho, Australia Data Base were reviewed. All patients had undergone lateral radiographs when standing simulating extension of the hip, and sitting forward when the hip is near full flexion. Pelvic tilt was measured as the angle of the Anterior Pelvic Plane to the vertical Sagittal Plane, rotation anteriorly being given a positive value. Pelvises that had rotated more than 13 degrees anteriorly (+ve) when sitting forward or posteriorly (-ve) when standing were considered to place the hip at increased risk of dislocation or edge loading when flexed or extending respectively. This degree of rotation has the effect of changing the acetabular version by approximately100. Most safe zones that have been described have given a range of anteversion of 200 as safe. A change of 100 would potentially place the acetabular orientation outside this range. Further, clinical studies have supported this concept. All lateral radiographs were reviewed to confirm that 281 had undergone instrumented spinal fusion at some level between T12 and S1. There was a large variability in the number and the levels arthrodesed. The range of pelvic mobility in the non-arthrodesed group in extension was −370 to 310 (mean −0.90, Standard deviation 7.49) and in flexed position was −700 to 490 (mean −1.90, Standard deviation 14.01). For the group with any fusion the range of pelvic tilt in extension was −310 to 220 (mean −40, Standard deviation 8.21) and flexed −320 to 460 (mean 4.40, Standard deviation 13.79). Of the 7121 cases without instrumented fusion, 15.5% were considered to be at risk when in flexion and 6.1% when extended. The risk for those with any fusion was approximately doubled in both flexion and extension. Further, those with extensive arthrodesis from T12 to S1 had a range of pelvic tilts similar to the non-fused group, although they had a significantly higher percentage of cases in the ‘at risk’ zones. The proportion of the cases in the ‘at risk’ zones decreased progressively as the arthrodesed levels moved from L5/S1 to the upper lumbar spine, and with decreasing number of levels fused.

Conclusion

Spinal fusion is not just one group as there are many combinations of different levels fused. Patients with instrumented spinal fusions do have a proportionately high risk of failure of their THR than the majority of cases with no instrumentation, though the risk varies significantly with the number of levels and actual levels arthrodesed. Further approximately 21% of cases with no spinal fusion have functional pelvic movements that would potentially place them ‘at risk’ of edge loading or dislocation.

For any figures or tables, please contact authors directly.


V. Dos Santos P. Ortega Cubillos C. Santos C. Rodrigo De Mello Roesler E. Alberto Fancello

Introduction

The use of bone cement as a fixation agent has ensured the long-term functionality of THA implants 1. However, some studies have shown the undesirable effect of wear of stem-cement interface, due to the release of metals and polymeric debris lead to implant failure 2,3. Debris is generated by the micromotion together with a severely corrosive medium present in the crevice of stem-cement interface 3,4. FEA studies showed that micromotion can affect osseointegration and fretting wear 5,6. The aim of this research is to investigate if the micromotions measures from in silico analysis of the stem-cement correlate with the fretting-corrosion damage observed on in vitro testing.

Methods

The in vitro fretting-corrosion testing was made with positioning and loading based on ISO 7206-4 and ISO 7206-6. It was used Exeter stems embedded in bone cement (PMMA) and immersed in a saline solution (9.0 g/L of NaCl). A fatigue testing system (Instron 8872, USA) was used to conduct the test, applying a sinusoidal cyclic load at 5.0 Hz. The tests were finished after 10 million cycles and images of stem surfaces were taken with a photographic camera (Canon EOS Rebel T6i, Japan) and a stereoscope (Leica M165C, Germany).

For the computational analysis, the same testing configurations were modeled on software ANSYS. The analysis was performed using linear isotropic elasticity for both stem (E=193GPa; ⱱ=0.27; σy=400MPa) and PMMA cement (E=2.7GPa; ⱱ=0.35; σu=76MPa)7,8.

A second-order tetrahedral element was used to mesh all components with a size of 0.5 mm in the stem-cement contact area, increasing until 1.0 mm outside from them. A frictional contact (µ=0.25) with an augmented Lagrange formulation was used. The third cycle of loading was evaluated and a variation of sliding distance less than 10% was set as convergence criteria. The micromotion was measured as the sliding distance on the stem-cement interface.


G.F. Dervin P. Thibaudeau

Young, active patients with end-stage medial osteoarthritis (OA) secondary to anterior cruciate ligament (ACL) deficiency present a treatment challenge for surgeons. Current surgical treatment options include high tibial osteotomy (HTO) with or without ACL reconstruction, unicompartmental knee arthroplasty (UKA) with ACL reconstruction, and total knee arthroplasty (TKA). A recent systematic review reported a much higher rate of complications in HTO combined with ACL reconstruction than with UKA-ACL (21.1% vs 2.8%), while survivorship between the two procedures was similar. UKA offers several advantages over TKA, namely faster recovery, lower blood loss, lower rate of postoperative complications, better range of motion, and better knee kinematics. However, UKA has classically been contraindicated in the presence of ACL deficiency due to reported concerns over increased incidence aseptic loosening tibia. However, as a majority of patients presenting with this pathology are young and active, concerns about implant longevity with TKRA and loss of bone stock have arisen.

As a result, several authors have described combining ACL reconstruction with medial UKA to decrease the tibiofemoral translation-related stress on the tibial component, thereby decreasing aseptic loosening-related failures. The purpose of this study was to compare the functional outcomes and survivorship of combined medial UKA and ACL reconstruction (UKA-ACL) with those of a matched TKA cohort. We hypothesized that UKA-ACL patients would have better functional outcomes than TKA patients while maintaining similar survivorship.

Material and Methods

We conducted a case-control study establishing UKA-ACL as the study group and TKA as the control group by a single senior surgeon between October 2005 and January 2015. We excluded patients who were over the age of 55 at the time of surgery and those who had less than two-year follow-up. A total of 21 patients (23 knees) were ultimately included in each group. Propensity matching was for age-, sex-, and body mass index (BMI)-matched control group of TKA cases.

Surgical technique


W. Johns N. Patel R. Langstaff V. Vedi

Background

Tourniquets and tranexamic acid (TXA) are commonly used in total knee arthroplasty (TKA), but there is not consensus on how these interventions affect blood transfusion rates and total blood loss. Few studies examine the combined use of both interventions. We compared outcome measures and transfusion rates following TKA, with and without the use of tourniquet and TXA.

Methods

Retrospective cohort study of 477 consecutive patients undergoing primary TKA at a single center between 2008 and 2013. There were 243 in the tourniquet-assisted (TA) and 234 in the tourniquet-unassisted (TU) group. Subanalysis was performed on those patients receiving TXA.


N.R. Arnold L.T. Samuel J. Karnuta M.A. Munim A.A. Sultan A.F. Kamath

Background

Standard preoperative protocols in total joint arthroplasty utilize the International Normalized Ratio (INR) to determine patient coagulation profiles. However, the relevance of preoperative INR values in joint arthroplasty remains controversial. Acceptable INR cutoff values for joint replacement are inconsistent, and are often based on studies of primary arthroplasty, or even non-orthopedic procedures. This analysis examined the relationship between preoperative INR values and post-operative outcomes in revision total hip arthroplasty (rTHA). Optimal cutoff INR values correlated with specific outcomes were subsequently determined.

Methods

The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) was retrospectively queried for revision total hip arthroplasty procedures performed between 2006 and 2017. Patients with a preoperative INR collected no later than 1 day prior to surgery were further stratified for analysis. INR values which correlated with specific outcomes were determined using receiver operating characteristics (ROC) curves for each outcome of interest. The optimal cutoff INR value for each outcome was then obtained using univariate and multivariate models which determined INR values that maximized both sensitivity and specificity.


J.A. Gustafson B.R. Levine R. Pourzal H.J. Lundberg

Introduction

Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure. There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference and may be influenced by assembly method.

Objective

The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability.


E. Darby C. Studders J. Giles

Introduction

Patient Specific Guides (PSGs) are used to increase the accuracy of arthroplasty. PSGs achieve this by incorporating geometry that fits in one unique position and orientation on a patient's bone. Sufficient docking rigidity ensures PSGs do not shift before being fixed by pins. Despite the importance of PSG docking rigidity, minimal research has been conducted on this issue. This study aims to determine whether commercially available PSGs, in their equilibrium position, provide sufficient stability for reliable surgical use.

Materials and Methods

A commercially available PSG (Glenoid PSG, BLUEPRINT™, Wright Medical) was analyzed and tested in this study; the mechanical performance of this guide was assessed using a custom testing apparatus mounted to a universal testing machine (UTM) (MTI-10k, Materials Testing Inc), assembled with a high-precision load cell (MiniDyn Type 9256C, Kistler). The apparatus accepts an additively manufactured glenoid surrogate and was designed to transform vertical crosshead forces from the UTM into PSG-applied forces transverse to the glenoid plane along anterior-posterior and superior-inferior axes and PSG-applied torques about lateral, anterior, and superior axes. Three trials were recorded for each force and torque application. Prior to each test, the glenoid surrogate and PSG were articulated together with a constant 27N compressive force — equivalent to the normal force exerted by a surgeon using the guide — applied using springs. Forces were recorded when the guide was displaced 2mm by transverse loads or 5° by torque application; if the guide visibly dislodged from the glenoid surrogate before either criterion was met, force was recorded at the time of dislodgement. If no PSG movement occurred, testing ceased at 75N or 1.19N⋅m, depending on the test type.


A.J. Acuña L.T. Samuel B. Yao M. Faour A.A. Sultan A.F. Kamath M. Mont

Introduction

With an ongoing increase in total knee arthroplasty (TKA) procedural volume, there is an increased demand to improve surgical techniques to achieve ideal outcomes. Considerations of how to improve post-operative outcomes have included preservation of the infrapatellar fat pad (IPFP). Although this structure is commonly resected during TKA procedures, there is inconsistency in the literature and among surgeons regarding whether resection or preservation of the IPFP should be achieved. Additionally, information about how surgical handling of the IPFP influences outcomes is variable. Therefore, the purpose of this systematic review was to evaluate the influence of IPFP resection and preservation on post-operative flexion, pain, Insall-Salvati Ratio (ISR), Knee Society Score (KSS), patellar tendon length (PTL), and satisfaction in primary TKA.

Methods

A systematic literature search was performed to retrieve all reports that evaluated IPFP resection or preservation during total knee arthroplasty (TKA). The following databases were queried: PubMed, EBSCO host, and SCOPUS, resulting in 488 unique reports. Two reviewers independently reviewed the studies for eligibility based on pre-established inclusion and exclusion criteria. A total of 11 studies were identified for final analysis. Patient demographics, type of surgical intervention, follow-up duration, and clinical outcome measures were collected and further analyzed. This systematic review reported on 11,996 total cases. Complete resection was implemented in 3,723 cases (31%), partial resection in 5,458 cases (45.5%), and preservation of the IPFP occurred in 2,815 cases (23.5%). Clinical outcome measures included patellar tendon length (PTL) (5 studies), knee flexion (4 studies), pain (6 studies), Knee Society Score (KSS) (3 studies), Insall-Salvati Ratio (ISR) (3 studies), and patient satisfaction (1 study).


M. Chughtai L.T. Samuel A.F. Kamath

The anterior approach for total hip arthroplasty (THA) has been associated with a faster earlier functional recovery and has gained increasing utilization for primary THA exposure. However, some studies have suggested a higher risk of femoral complications, as well as difficulty with femoral exposure. Techniques of soft tissue releases have been described to offer better femoral exposure, and to help mitigate complications like femoral fracture or breach of the canal with broaching. However, appropriate titrated soft release remains important to decrease potential risk of dislocation. Here we present a suggested technique and hierarchy of soft tissue releases to adequately expose the femur. In addition, we discuss adjunctive table and patient position maneuvers for femoral exposure, as well as more extensile and revision techniques if necessary.

For any figures or tables, please contact authors directly.


C. Knowlton M. Wimmer

INTRODUCTION

The specific factors affecting wear of the ultrahigh molecular weight polyethylene (UHMWPE) tibial component of total knee replacements (TKR) are poorly understood. One recent study demonstrated that lower conforming inserts produced less wear in knee simulators. The purpose of this study is to investigate the effect of insert conformity and design on articular surface wear of postmortem retrieved UHMWPE tibial inserts.

METHODS

Nineteen NexGen cruciate-retaining (NexGen CR) and twenty-five NexGen posterior-stabilized (NexGen PS) (Zimmer) UHWMPE tibial inserts were retrieved at postmortem from fifteen and eighteen patients respectively. Articular surfaces were scanned at 100×100μm using a coordinate measuring machine (SmartScope, OGP Inc.). Autonomous mathematical reconstruction of the original surface was used to calculate volume loss and linear penetration maps of the medial and lateral plateaus. Wear rates for the medial, lateral and total articular surface were calculated as the slope of the linear regression line of volume loss against implantation time. Volume loss due to creep was estimated as the regression intercept. Student t-tests were used to check for significant.


N. Slater D. Justin E. Su A. Pearle B. Schumacher

Traditional procedures for orthopedic total joint replacements have relied upon bone cement to achieve long-term implant fixation. This remains the gold standard in number of procedures including TKR and PKR. In many cases however, implants fixed with cement have proven susceptible to aseptic loosening and 3rd body wear concerns. These issues have led to a shift away from cement fixation and towards devices that rely on the natural osteoconductive properties of bone and the ability of porous-coated implants to initiate on-growth and in-growth at the bone interface, leading to more reliable fixation.

To facilitate long-term fixation through osseointegration, several mechanical means have been utilized as supplemental mechanism to aid in stabilizing the prostheses. These methods have included integrated keels and bone screws. The intent of these components is to limit implant movement and provide a stable environment for bone ingrowth to occur. Both methods have demonstrated limitations on safety and performance including bone fracture due keel induced stresses, loosening due to inconsistent pressfit of the keel, screw-thread stripping in cancellous bone, head-stripping, screw fracture, screw loosening, and screw pullout. An alternative method of fixation utilizing blade-based anchoring has been developed to overcome these limitations.

The bladed-based fixation concept consists of a titanium alloy anchor with a “T-shaped” cross-section and sharped-leading end that can be impacted directly into bone. The profile is configured to have a bladed region on the horizontal crossbar of the “T” for engagement into bone and a solid rail at the other end to mates with a conforming slot on the primary body of the prosthesis. A biased chisel tip is added to the surface of the leading blade edge to draw the bone between the anchor's horizontal surface and surface of the implant, thus generating a compressive force at the bone-to-prothesis interface. The anchoring mechanism has been successfully been integrated into the tibial tray component of a partial knee replacement; an implant component that has a clinical history of revision due to loosening.

A detailed investigation into the pulloff strength, wear debris generation, compressive-force properties, and susceptibility to tibial bone fracture was carried out on the anchor technology when integrated in a standard tibial tray of a partial knee replacement. When tested in rigid polyurethane bone foam (Sawbones, Grade 15) the pulloff strength of the construct increased by 360% when utilizing the anchor. The tibial tray and anchor construct were cycled under compressive loading and demonstrated no evidence of interface corrosion or wear debris generation after 1 million cycles. In addition, the anchor mechanism was shown to generate 340N of compressive force at the tibial tray-to-bone interface when evaluated with pressure sensitive film (Fuji Prescale, Medium Grade). Finally, the ultimate compressive load to induce tibial fracture was shown to increase by 17% for the anchored tray as compared to a traditional keeled tray when tested in an anatomic tibial sawbones model; and by 19% when evaluated in human cadaveric tibias.

For any figures or tables, please contact authors directly.


M. Chughtai L.T. Samuel A.F. Kamath

Introduction

The purpose of the study was to assess the clinical outcomes of an algorithm for soft tissue femoral release in anterior approach (AA) total hip arthroplasty (THA). Specifically, the following were assessed in this series of patients utilizing a standardized soft tissue release sequence: 1) clinical outcomes with the Harris Hip Score (HHS); 2) re-operation rates; 3) component survivorship; and 4) complications.

Methods

We retrospectively analyzed a prospectively maintained database of patients who underwent AA THA from 2014 to 2017. A total of 1000 patients were included, with minimum follow up of 2 years (range 2–5 years). The mean age was 65 years (range, 22–89), 48% were males, and the mean Body Mass Index was 34 (range, 20–52). Descriptive statistics were performed for most endpoints except for component survivorship, which was assessed with Kaplan-Meier analysis.


L.T. Samuel M.A. Munim A.F. Kamath

The Bernese periacetabular osteotomy (PAO) is a well-established procedure in the management of symptomatic hip dysplasia. The associated Smith-Petersen exposure offers excellent visualization of the acetabulum and control of acetabular osteotomy and mobilization. The traditional exposure of the true pelvis involves osteotomy of the iliac wing in order to mobilize the sartorial and inguinal ligament insertion. However, full osteotomy of the iliac spine may necessitate screw fixation if a relatively large segment of bone is included. A known complication with screw fixation of the iliac wing osteotomy involves failure of fixation and screw back out. Moreover, the screw may be irritative to the patient even in the setting of adequate fixation. A larger osteotomy may also injure the lateral femoral cutaneous nerve as it travels near the anterior superior spine. To minimize the risk of these potential complications, a wafer osteotomy may be used to develop a sleeve of tissue involving the sartorial insertion. Markings may be made so that the curvilinear incision is centered about the anterior-superior iliac spine (ASIS). The sartorial sleeve also mobilizes the entirety of the lateral femoral cutaneous nerve medially as it runs and branches to varying degrees in a fatty tissue layer in the tensor-sartorius interval directly beneath the subcutaneous layer, thereby affording protection throughout the procedure. When the ASIS is first osteotomized as a several millimeter-thick mobile fragment and reflected, the sartorius attachment to the mobile fragment of the wafer osteotomy may be preserved. Furthermore, the wafer osteotomy may be re-fixed to the stable pelvis during closure with simple heavy suture fixation alone, avoiding screw insertion or associated removal. Because only a wafer or bone is taken during the spine osteotomy, more bone is available at the ASIS for fixation of the mobile fragment after repositioning. In this technical note, we describe the wafer osteotomy technique in further detail.

For any figures or tables, please contact authors directly.


A.J. Acuña L.T. Samuel A.A. Sultan A.F. Kamath

Introduction

Acetabular dysplasia, also known as developmental dysplasia of the hip, has been shown to contribute to the onset of osteoarthritis. Surgical correction involves repositioning the acetabulum in order to improve coverage of the femoral head. However, ideal placement of the acetabular fragment can often be difficult due to inadequate visualization. Therefore, there has been an increased need for pre-operative planning and navigation modalities for this procedure.

Methods

PubMed and EBSCO Host databases were queried using keywords (preoperative, pre-op, preop, before surgery, planning, plan, operation, surgery, surgical, acetabular dysplasia, developmental dysplasia of the hip, and Hip Dislocation, Congenital [Mesh]) from 1974 to March 2019. The search generated 411 results. We included all case-series, English, full-text manuscripts pertaining to pre-operative planning for congenital acetabular dysplasia. Exclusion criteria included: total hip arthroplasty (THA) planning, patient population mean age over 35, and double and single case studies.


T. Tamaoka H. Muratsu S. Tachibana Y. Suda T. Oshima T. Koga T. Matsumoto A. Maruo H. Miya R. Kuroda

Introduction

Patients-reported outcome measures (PROMs) have been reported as the important methods to evaluate clinical outcomes in total knee arthroplasty (TKA). The patient satisfaction score in Knee Society Score (KSS-2011) has been used in the recent literatures. Patient satisfaction was subjective parameter, and would be affected by multiple factors including psychological factors and physical conditions at not only affected joint but also elsewhere in the body. The question was raised regarding the consistency of patient satisfaction score in KSS-2011 to other PROMs.

The purpose of this study was to investigate the correlation of patient satisfaction in KSS-2011 to other categories in KSS-2011 and to other PROMs including Forgotten Joint Score (FJS-12), EuroQol-5 Dimensions (EQ-5D) and 25-questions in Geriatric Locomotive Function Scale (GLFS-25).

Material & Method

83 patients over 65 years old with osteoarthritic knees were involved in this study. All patients underwent CR-TKAs (Persona CRR). The means and ranges of demographics were as follows: age; 74.5 years old (65–89), Hip-Knee-Ankle (HKA) angle; 12.4 (−6.2–22.5) in varus. We asked patients to fulfill the questionnaire including KSS-2011, FJS-12, EQ-5D and GLFS-25 at 1-year postoperative follow-up visit. KSS-2011 consisted of 4 categories of questions; patient satisfaction (PS), symptoms, patient expectations (PE), functional activities (FA).

We evaluated the correlation of PS to other PROMs using simple linear regression analyses (p<0.001).


Y. Suda H. Muratsu Y. Hiranaka T. Tamaoka T. Oshima T. Koga T. Matsumoto A. Maruo H. Miya R. Kuroda

Introduction

The influences of posterior tibial slope on the knee kinematics have been reported in both TKA and UKA. We hypothesized the posterior tibial slope (PTS) would affect the sagittal knee alignment after UKA. The influences of PTS on postoperative knee extension angle were investigated with routine lateral radiographies of the knee after UKA.

Materials & Methods

Twenty-four patients (26 knees; 19 females, 7 males) underwent medial UKA were involved in this study. Average age was 74.8 ± 7.2 years. The mean preoperative active range of motion were − 4.1° ± 6.3°in extension and 123.2° ± 15.5° in flexion. All UKAs were performed using fixed bearing type UKA (Zimmer Biomet, ZUK), with adjusting the posterior slope of the proximal tibial bone cut according to the original geometry of the tibia. Routine lateral radiographies of the knee were examined preoperatively, 6 months after the surgery. PTS and knee extension angles with maximal active knee extension (mEXT) and one-leg standing (sEXT) were radiographically measured. We used the fibular shaft axis (FSA) for the sagittal mechanical axis of the tibia. PTS was defined as the angle between the medial tibial plateau and the perpendicular axis of FSA. Extension angles (mEXT and sEXT) were defined as the angles between FSA and distal femoral shaft axis (positive value for hyperextension). The changes of PTS and the influences of PTS on sEXT at each time period were analyzed using simple linear regression analysis (p<0.05).


E. Bedard J. Giles

Introduction

3D printed Patient Specific Guides (PSGs) can improve the accuracy of joint-replacement. Pre-operative CT bone models are used to design a PSG that fits the patient's specific bone geometry. A key design requirement is to maximize docking robustness such that the PSG can maintain a stable position in the planned location. However, current PSG designs are typically manually defined, lack a quantitative assessment of robustness, and have an unknown consistency of docking rigidity between patients. Limited research exists on the stability and robustness of surgical guides, and no software packages are available to facilitate this analysis. Our goal was to develop such a software.

Methods

In this paper, the contact between a patient's bone and the PSG is modelled using robotic grasping theory, and its docking robustness is quantified by analysis of the PSG's grasp wrench space (GWS) (i.e. the combination of contact forces and torques between the bone and PSG). To this end, a PSG design and analysis tool with a graphical user interface was developed in MATLAB. This tool allows the user to load shapes (e.g. STL bone models), select and manipulate possible contact points, and optimize the contact point locations according to the largest-minimum resisted wrench (LRW) that the grasp can resist in any direction. The LRW is a grasp quality metric equivalent to the radius of the largest (hyper)sphere contained within the convex hull of the GWS, and its value can be evaluated using frame-variant GWS calculations (i.e. centroid-dependent) or frame-invariant GWS calculations (i.e. centroid-independent).


C. Studders D. Saliken H. Shirzadi G. Athwal J. Giles

INTRODUCTION

Reverse shoulder arthroplasty (RSA) provides an effective alternative to anatomic shoulder replacements for individuals with cuff tear arthropathy, but certain osteoarthritic glenoid deformities make it challenging to achieve sufficient long term fixation. To compensate for bone loss, increase available bone stock, and lateralize the glenohumeral joint center of rotation, bony increased offset RSA (BIO-RSA) uses a cancellous autograft for baseplate augmentation that is harvested prior to humeral head resection. The motivations for this computational study are twofold: finite element (FE) studies of BIO-RSA are absent from the literature, and guidance in the literature on screw orientations that achieve optimal fixation varies. This study computationally evaluates how screw configuration affects BIO-RSA graft micromotion relative to the implant baseplate and glenoid.

METHODS

A senior shoulder specialist (GSA) selected a scapula with a Walch Type B2 deformity from patient CT scans. DICOM images were converted to a 3D model, which underwent simulated BIO-RSA with three screw configurations: 2 divergent superior & inferior locking screws with 2 convergent anterior & posterior compression screws (SILS); 2 convergent anterior & posterior locking screws and 2 superior & inferior compression screws parallel to the baseplate central peg (APLS); and 2 divergent superior & inferior locking screws and 2 divergent anterior & posterior compression screws (AD). The scapula was assigned heterogeneous bone material properties based on the DICOM images’ Hounsfield unit (HU) values, and other components were assigned homogenous properties. Models were then imported into an FE program for analysis. Anterior-posterior and superior-inferior point loads and a lateral-medial distributed load simulated physiologic loading. Micromotion data between the RSA baseplate and bone graft as well as between the bone graft and glenoid were sub-divided into four quadrants.


S.K. Ismaily J. Parekh S. Han H. Jones P.C. Noble

INTRODUCTION

In theory, Finite Element Analysis (FEA) is an attractive method for elucidating the mechanics of modular implant junctions, including variations in materials, designs, and modes of loading. However, the credence of any computational model can only be established through validation using experimental data. In this study we examine the validity of such a simulation validated by comparing values of interface motion predicted using FEA with values measured during experimental simulation of stair-climbing.

MATERIALS and METHODS

Two finite element models (FEM) of a modular implant assembly were created for use in this study, consisting of a 36mm CoCr femoral head attached to a TiAlV rod with a 14/12 trunnion. Two head materials were modelled: CoCr alloy (118,706 10-noded tetrahedral elements), and alumina ceramic (124,710 10-noded tetrahedral elements). The quasi-static coefficients of friction (µs) of the CoCr-TiAlV and Ceramic-TiAlV interfaces were calculated from uniaxial assembly (2000N) and dis-assembly experiments performed in a mechanical testing machine (Bionix, MTS). Interface displacements during taper assembly and disassembly were measured using digital image correlation (DIC; Dantec Dynamics). The assembly process was also simulated using the computational model with the friction coefficient set to µs and solved using the Siemens Nastran NX 11.0 Solver. The frictional conditions were then varied iteratively to find the value of µ providing the closest estimate to the experimental value of head displacement during assembly.

To validate the FEA model, the relative motion between the head and the trunnion was measured during dynamic loading simulating stair-climbing. Each modular junction was assembled in a drop tower apparatus and then cyclically loaded from 230–4300N at 1 Hz for a total of 2,000 cycles. The applied load was oriented at 25° to the trunnion axis in the frontal plane and 10° in the sagittal plane. The displacement of the head relative to the trunnion during cyclic loading was measured by a three-camera digital image correlation (DIC) system. The same loading conditions were simulated using the FEA model using the optimal value of µ derived from the initial head assembly trials.


M. Mont T. Kinsey J. Zhang M. Bhowmik-Stoker A. Chen F. Orozco W. Hozack O. Mahoney

Introduction

Component position and overall limb alignment following total knee arthroplasty (TKA) have been shown to influence prosthetic survivorship and clinical outcomes. Robotic-assisted (RA) total knee arthroplasty has demonstrated improved accuracy to plan in cadaver studies compared to conventionally instrumented (manual) TKA, but less clinical evidence has been reported.

The objective of this study was to compare the three-dimensional accuracy to plan of RATKA with manual TKA for overall limb alignment and component position.

Methods

A non-randomized, prospective multi-center clinical study was conducted to compare RATKA and manual TKA at 4 U.S. centers between July 2016 and August 2018. Computed tomography (CT) scans obtained approximately 6 weeks post-operatively were analyzed using anatomical landmarks. Absolute deviation from surgical plans were defined as the absolute value of the difference between the CT measurements and surgeons’ operative plan for overall limb, femoral and tibial component mechanical varus/valgus alignment, tibial component posterior slope, and femoral component internal/external rotation. We tested the differences of absolute deviation from plan between manual and RATKA groups using stratified Wilcoxon tests, which controlled for study center and accounted for skewed distributions of the absolute values. Alpha was 0.05 two-sided. At the time of this abstract, data collections were completed for two centers (52 manual and 58 RATKA).


J. Zhang M. Bhowmik-Stoker L. Yanoso-Scholl C. Condrey K. Marchand K.D. Hitt R. Marchand

Introduction

Studies have shown that dissatisfaction following TKA may stem from poor component placement and iatrogenic factors related to variability in surgical execution. A CT-based robotic assisted system (RA) allows surgeons to dynamically balance the joint prior to bone resection. This study aimed to determine if this system could improve TKA planning, reduce soft tissue releases, minimize bone resection, and accurately predict component size in varus knee.

Method

Four hundred and seventy four cases with varus deformity undergoing primary RATKA were enrolled in this prospective, single center and surgeon study. Patient demographics and intraoperative surgical details were collected. Initial and final 3-dimensional alignment, component position, bone resection depths, use of soft tissue releases, knee balancing gaps, and component size were collected intraoperatively. WOMAC and KOOS Jr. scores were collected 6 months, and 1 year postoperatively. Descriptive statistics were applied to determine the changes in these parameters between initial and final values.


L. Delgadillo H.J. Jones P. C. Noble

Background

Cementless Total Knee Arthroplasty has been developed to reduce the incidence of failure secondary to aseptic loosening, osteolysis and stress-induced osteopenia, especially in younger and more active patients. However, failures are still more common compared to cemented components, especially those involving the tibia. It is hypothesized that this is caused by incomplete contact between the tibial tray and the underlying bony surface due to: (i) inadequate flatness of the tibial osteotomy, or (ii) failure of implantation to spread the area of contact over the exposed cancellous surface. In the present study we compare the contact area developed during implantation of a cementless tray as a function of the initial flatness of the tibial osteotomy.

Method

Eight joint replacement surgeons prepared 14 cadaveric knees for cementless TKR using a standard instrumentation set (ZimmerBiomet Inc). The tibial osteotomy was created using an oscillating bone saw and a 1.27mm blade (Stryker Inc) directed by a slotted cutting guide mounted on an extramedullary rod and fixed to the tibia with pins and screws. The topography of the exposed cancellous surface was captured with a commercial laser scanner (Faro Inc, Halifax, approx. 33,000 surface points). 3D computer models of each tibial surface were generated in a CAD environment (Rapidform, Inuus). After scanning, a cementless tibial tray was implanted on the prepared tibial surface using a manual impactor. The tray-tibia constructs were dissected free of soft tissue, embedded in mounting resin, and sectioned with a diamond wafering saw. Points of bone-tray contact and interface separation were identified by stereomicroscopy and incorporated in the 3D computer models. Maps were generated depicting contacting and non-contacting areas Each model was subdivided into 7 zones for characterizing the distribution of interface contact in terms of anatomic location.


J. Currier B. Currier K. Jevsevar D. Van Citters

Introduction

In an effort to provide a TKA bearing material that balances resistance to wear, mechanical failure and oxidation, manufacturers introduced antioxidant polyethylene. In many designs, this is accomplished through pre-blending the polymer with the antioxidant before consolidation and radiation crosslinking. This study reports the wear performance (in terms of thickness change) of a hindered phenol (PBHP) UHMWPE from analysis of an early series of knee retrievals and explores these questions: 1) What is early-time performance of this new bearing material? 2) Is there a difference in performance between fixed and mobile bearings in this design? 3) How does quantitative surface analysis help understand performance at the insert-tray modular interface?

Methods

A series of 100 consecutive Attune™ knee inserts (DePuy Synthes, Warsaw, IN) received at revision by an IRB approved retrieval laboratory between September 2014 and March 2019 were investigated. In vivo duration was 0–52 months. Both the fixed bearing design (n=74) and the rotating platform mobile bearing design (n=26) were included. Dimensional change was determined by measurement of each insert and compared to the as-manufactured dimensions, provided by the manufacturer. The insert-tray interfaces under the loaded bearing zones were analyzed with light interferometry using an optical surface profiler (NewView™ 7300, Zygo, Middlefield, CT). Statistical analyses to explore relationships between measured variables were conducted using SPSS.


B.H. Currier J.H. Currier K.C. Jevsevar D.W. Van Citters

Introduction

In vivo, UHMWPE bearing surfaces are subject to wear and oxidation that can lead to bearing fatigue or fracture. A prior study in our laboratory of early antioxidant (AO) polyethylene retrievals, compared to gamma-sterilized and highly cross-linked (HXL) retrievals, showed them to be more effective at preventing in vivo oxidation. The current analysis expands that early study, addressing the effect of:

manufacturing-variables on as-manufactured UHMWPE;

in vivo time on these initial properties;

identifying important factors in selecting UHMWPE for the hip or knee.

Methods

After our prior report, our IRB-approved retrieval laboratory received an additional 96 consecutive AO-retrievals (19 hips, 77 knees: in vivo time 0–6.7 years) of three currently-marketed AO-polyethylenes. These retrievals represented two different antioxidants (Vitamin E and Covernox) and two different delivery methods: blending-prior-to and diffusing-after irradiation cross-linking. Consecutive HXL acetabular and tibial inserts, received at retrieval, with in vivo time of 0–6.7 years (260 remelted, 170 annealed) were used for comparison with AO-retrievals.

All retrievals were analyzed for oxidation and trans-vinylene index (TVI) using a Thermo-Scientific iN10 FTIR microscope. Mechanical properties were evaluated for 35 tibial inserts by uniaxial tensile testing using an INSTRON load frame. Cross-link density (n=289) was measured using a previously published gravimetric gel swell technique. Oxidation was reported as maximum ketone oxidation index (KOI) measured for each bearing. TVI was reported as the average of all scans for each material. Cross-link density and mechanical properties were evaluated as a function of both TVI and oxidation.


H.J. Jones E. Foley K. Garrett P.C. Noble

Introduction

Corrosion products from modular taper junctions are a potent source of adverse tissue reactions after THR. In an attempt to increase the area of contact and resistance to interface motion in the face of taper mismatches, neck trunnions are often fabricated with threaded surfaces designed to deform upon assembly. However, this may lead to incomplete contact and misalignment of the head on the trunnion, depending upon the geometry and composition of the mating components. In this study we characterized the effect of different femoral head materials on the strength and area of contact of modular taper constructs formed with TiAlV trunnions.

Materials and Methods

Three groups of 36mm femoral heads (CoCr, Biolox ceramic; Oxinium) and matching Ti-6Al-4V rods with 12/14 trunnions were selected for use in this study. The surface of each trunnion was coated with a 20nm layer of gold applied by sputter-coating in vacuo. Each head/trunnion pair was placed in an alignment jig and assembled with a peak axial impaction force of 2000N using a drop tower apparatus. After assembly, each taper was disassembled in a custom apparatus mounted in a mechanical testing machine (Bionix. MTS. After separation of the components, the surface of each trunnion was examined with backscattered electron microscopy to reveal the area of disruption of the original gold-coated surface. Images encompassing the entire surface of the trunnion were collected and quantified by image processing.


R. Chapman W. Moschetti D. Van Citters

Introduction

With many stakeholders, healthcare decisions are complex. However, patient interests should be prioritized. This maximizes healthcare value (quality divided by cost), simultaneously minimizing costs (objective) and maximizing quality (subjective). Unfortunately, even ‘high value’ procedures like total knee arthroplasty (TKA) suffer from recovery assessment subjectivity (i.e. high assessment variability) and increasing costs. High TKA costs and utilization yield high annual expenditures (∼$22B), including postoperative physical therapy (PT) accounting for ∼10% of total costs (∼$2.3B annually). Post-TKA PT is typically homogenous across subjects ensuring most recover, however recent work shows outcomes unimpacted by PT. Accordingly, opportunities exist improving healthcare value by simultaneously reducing unnecessary PT expenditures and improving outcomes. However, discerning recovery completion relies on discrete ROM measures captured clinically and subjective clinician experience (i.e. intuition about recovery). Accordingly, our goal was developing objective post-TKA performance assessment methods utilizing gait knee ROM and statistical analyses to categorize patient recovery (‘accelerated,’ ‘delayed,’ or ‘normal’).

Methods

We first established statistical reasons for current post-TKA rehabilitation including risk-reward tradeoffs between incorrectly ascribing ‘poor recovery’ to well-recovering patients (T1 error) or ‘good recovery’ to poorly-recovering patients (T2 error) using methods described by Mudge et al. and known TKA volumes/rehabilitation costs. Next, previously captured gait ROM data from well-healed patients was utilized establishing standard recovery curves. These were then utilized to assess newly captured patient recovery. Following IRB approval, we prospectively captured gait ROM from 10 TKA patients (3M, 69±13 years) 1-week pre-TKA and 6-weeks immediately post-TKA. Performance was compared to recovery curves via control charts/Shewhart rules (daily performance) as well as standard deviation thresholds (weekly performance) establishing recovery as ‘accelerated,’ ‘delayed,’ or ‘normal.’ The categorization was extrapolated to US TKA population and savings/expenses quantified. Statistical analyses were performed in Minitab with statistical significance set to α<0.05.


X. Chen C. Myers C. Clary P. Rullkoetter

INTRODUCTION

The magnitude of principal strain is indicative of the risks of femoral fracture,1,2 while changes in femoral strain energy density (SED) after total hip arthroplasty (THA) have been associated with bone remodeling stimulus.3 Although previous modeling studies have evaluated femoral strains in the intact and implanted femur under walking loads through successfully predicting physiological hip contact force and femoral muscle forces,1,2,3 strains during ‘high load’ activities of daily living have not typically been evaluated. Hence, the objective of this study was to compare femoral strain between the intact and the THA implanted femur under peak loads during simulated walking, stair descent, and stumbling.

METHODS

CTs of three cadaveric specimens were used to develop finite element (FE) models of intact and implanted femurs. Implanted models included a commercially-available femoral stem (DePuy Synthes, Warsaw, IN, USA). Young's moduli of the composite bony materials were interpolated from Hounsfield units using a CT phantom and established relationships.4 Peak hip contact force and femoral muscle forces during walking and stair descent were calculated using a lower extremity musculoskeletal model5 and applied to the femur FE models (Fig. 1). While maintaining the peak hip contact forces, muscle forces were further adjusted using an iterative optimization approach in FE models to reduce the femur deflection to the reported physiological range (< 5 mm).2 Femoral muscle forces during stumbling were estimated utilizing the same optimization approach with literature-reported hip contact forces as input.6 Maximum and minimum principal strains were calculated for each loading scenario. Changes in SED between intact and THA models were calculated in bony elements around the stem.


R. Chapman W. Moschetti D. Van Citters

Introduction

Total knee arthroplasty (TKA) is highly successful due to pain reduction, patient satisfaction, and increased range of motion (ROM) during activities of daily living (ADL). ROM recovery is critical for successful outcomes, however ROM values are typically captured during routine physical therapy (PT) appointments via simplified measures (e.g. goniometric maximum passive ROM). These measures are imprecise, potentially neglecting patients’ home experiences. Accordingly, improved measurement methods are necessary to realistically represent ROM recovery. A validated inertial measurement unit (IMU) method continuously capturing knee ROM was deployed assessing knee ROM recovery during PT appointments and during patients’ routine daily experiences. Our objectives were to 1) continuously capture knee ROM pre-/post-TKA via IMUs and 2) divide each day's data to PT/non-PT segments comparing ‘gold standard’ ROM measurements (PT periods) with non-invasive home measurements (non-PT periods). Given patients are verbally/physically encouraged during PT, we hypothesized PT and non-PT metrics would be significantly different including 1) greater kinematics, 2) shorter times, and 3) greater activity level during PT compared to non-PT.

Methods

Following IRB approval, IMUs captured long duration, continuous (8–12 hours/day, ∼50 days) knee ROM pre-/post-TKA. Post-TKA metrics were subdivided to PT/non-PT time periods including maximum ROM, gait phase ROMs (stance/swing), gait times (stride/stance/swing), and activity level. Clinical ROM and patient reported outcome measures (PROMs) were also captured before/after TKA. Statistical comparisons were completed between pre-TKA, post-TKA PT, and post-TKA non-PT metrics. Correlation analyses were completed between IMU, clinical ROM, and PROMs.


J.Y. Lazennec Y.W. Kim R. Caron D. Folinais A. Eslam Pour

Introduction

Most of studies on Total Hip Arthroplasty (THA) are focused on acetabular cup orientation. Even though the literature suggests that femoral anteversion and combined anteversion have a clinical impact on THA stability, there are not many reports on these parameters. Combined anteversion can be considered morphologically as the addition of anatomical acetabular and femoral anteversions (Anatomical Combined Anatomical Anteversion ACA). It is also possible to evaluate the Combined Functional Anteversion (CFA) generated by the relative functional position of femoral and acetabular implants while standing. This preliminary study is focused on the comparison of the anatomical and functional data in asymptomatic THA patients.

Material and methods

50 asymptomatic unilateral THA patients (21 short stems and 29 standard stems) have been enrolled. All patients underwent an EOS low dose evaluation in standing position.

SterEOS software was used for the 3D measurements of cup and femur orientation. Cup anatomical anteversion (CAA) was computed as the cup anteversion in axial plane perpendicular to the Anterior Pelvic Plane. Femoral anatomical anteversion (FAA) was computed as the angle between the femoral neck axis and the posterior femoral condyles in a plane perpendicular to femoral mechanical axis. Functional anteversions for the cup (CFA) and femur (FFA) were measured in the horizontal axial patient plane in standing position. Both anatomical and functional cumulative anteversions were calculated as a sum. All 3D measures were evaluated and compared for the repeatability and reproducibility

Statistical analysis used Mann-Whitney U-test considering the non-normal distribution of data and the short number of patients (<30 for each group).


P. Ortega Cubillos V. Dos Santos A. Luiz Almeida Pizzolatti C. Rodrigo De Mello Roesler

Introduction

The release of metallic debris can promote many adverse tissue reactions, as metallosis, necrosis, pseudotumors and osteolysis 1–3. This debris is mainly generated by the fretting-corrosion mechanism due to the geometric difference in the head-stem interface 4. Retrieval and in silico analysis showed the roughness of the stem-head interface appears to play an important role in the volume of material lost and THA failure 5–7. The technical standard ISO 7206-2 recommends the measurement of average roughness (Ra) and max height of the profile (Rz) to control the quality of the surface finish of articulating surfaces on THA implants. However, despite the importance of the trunnion roughness, there is no specific requirement for this variable on the referred technical standard. The present study carried out a surface finish analysis of the trunnion of hip stems from five distinct manufacturers.

Methods

Four stems (n = 4) from five (5) distinct manufacturers (A, B, C, D, and E) were used to evaluate the roughness of the trunnion. All the stems are similar to the classical Exeter stem design, with a 12/14 taper and a polished body surface.

The roughness of trunnions was evaluated according to ISO 4287 and ISO 13565-2. The total assessment length was 4.8 mm with 0.8 mm cut-off. The first and last 8.33% of assessment length were not considered. The measurements of all samples were made in a rugosimeter with 2 µm feeler ITP (Völklingen, Germany), the velocity of 0.5 mm.s-1, and a force of 1.5 mN. The calibration was made at 20 ºC and relative humidity at 50%.

The Kruskal Wallis with post hoc Nemenyi test was used to evaluate the difference of Ra among the manufacturers. The confidence level was set at 5%.


J. Muir J. Benson J. Napenas J. Vigdorchik

Anteroposterior (AP) pelvic radiographs are the standard tool used for pre-operative planning and post-operative evaluation during total hip arthroplasty (THA). The accuracy of this imaging modality is, however, limited by errors in pelvic orientation and image distortion. Pelvic obliquity is corrected for by orienting measurements to a reference line such as the interteardrop line or the interischial line, while several methods for correcting for pelvic tilt have been suggested, with varying levels of success. To date, no reliable method for correcting for pelvic rotation on pelvic imaging is available. The purpose of this study was to evaluate a novel method for correcting pelvic rotation on a standard anteroposterior (AP) radiographs. Computed tomography (CT) scans from 10 male cadavers and 10 female THA patients were segmented using 3D Slicer and used to create 3D renderings for each pelvis. Synthetic AP radiographs were subsequently created from the 3D renderings, using XRaySim. For each pelvis, images representing pelvic rotation of 30° left to 30° right, at 5° increments were created. Four unique parameters based on pelvic landmarks were used to develop the correction method: i) the horizontal distance from the upper edge of the pubic symphysis to the sacroiliac joint midline (PSSI), ii) the ratio of the horizontal distances from the upper edge of the pubic symphysis to the outer lateral border of both obturator foramina (PSOF), iii) the width ratio of the obturator foramina (OFW) and iv) the ratio of the horizontal distance from each anterior superior iliac spine to the sacroiliac joint midline (ASISSI). The relationships between the chosen parameters and pelvic rotation were investigated using a series of 260 (13 per pelvis) synthetic AP radiographs. Male and female correction equations were generated from the observed relationships. Validation of the equations was done using a different set of 50 synthetic radiographs with known degrees of rotation. In males, the PSSI parameter was most reliable in measuring pelvic rotation. In females, PSOF was most reliable. A high correlation was noted between calculated and true rotation in both males and females (r=0.99 male, r=0.98 female). The mean difference from the male calculated rotation and true rotation value was 0.02°±1.8° while the mean difference from the female calculated rotation and true rotation value was −0.01°±1.5°. Our correction method for pelvic rotation using four pelvic parameters provides a reliable method for correcting pelvic rotation on AP radiographs.

For any figures or tables, please contact authors directly.


J. Broberg J. Howard B. Lanting E. Vasarhelyi X. Yuan R.W. McCalden D. Naudie M. Teeter

Introduction

Despite improvements in the survivorship of total knee replacements (TKR) over the years, patient satisfaction following TKR has not improved, with approximately 20% of patients recording dissatisfaction with their new knee joint. It is unclear why many patients feel this way, but it may relate in part to implant designs that do not provide a “natural” feeling knee. Implant manufacturers continue to introduce new concepts for implant design, which are essential for reaching the goal of a “normal” knee after TKR surgery. The Journey II TKR (Smith & Nephew) was developed with this goal in mind. Its anatomical design attempts to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Our objective is to examine patients receiving the Journey II TKR to measure the knee joint contact kinematics of the Journey II TKR compared to a non-anatomically designed implant by the same manufacturer. We hypothesize that the Journey II TKR will have more natural contact kinematics that differ from the non-anatomically designed implant.

Methods

A total of 28 individuals were recruited to receive a Journey II TKR, matching an existing prior cohort with a non-anatomical design from the same manufacturer (Legion TKR, Smith & Nephew). For both groups, a series of radiostereometric analysis (RSA) images were acquired at different knee flexion angles, ranging in 20° increments from 0° to 120°. Model-based RSA software (RSACore, Leiden, Netherlands) was used to obtain the 3D positions and orientations of the femoral and tibial implant components, which were in turn used to obtain kinematic measures (contact locations and magnitude of excursion) for each condyle. Results from the Journey II TKR group at 3 months post-operation were compared to the 2-year post-operative measurements from the Legion TKR group.


J. Broberg J. Howard B. Lanting E. Vasarhelyi X. Yuan D. Naudie M. Teeter

Introduction

Surgeons performing a total knee replacement (TKR) have two available techniques available to help them achieve the proper bone resections and ligament tension – gap balancing (GB) and measured resection (MR). GB relies on balancing ligaments prior to bony resections whereas bony resections are made based on anatomical landmarks in MR. Many studies have been done to compare the joint kinematics between the two techniques, however the results have been varied. These studies were not done with anatomically designed prostheses. The Journey II (Smith & Nephew, Memphis, TN) is one such design which attempts to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Given the design differences between anatomical and non-anatomical prostheses, it is important to investigate whether one technique provides superior kinematics when an anatomical design is used. We hypothesize that there will be no difference between the two techniques.

Methods

A total of 56 individuals were recruited to receive a Journey II prosthesis and randomized evenly to groups where the GB technique or MR technique is used. For all patients in the study, a series of radiostereometric analysis (RSA) images were acquired at 3-months post-operatively at different knee flexion angles, ranging in 20° increments from 0° to 120°. Model-based RSA software (RSACore, Leiden, Netherlands) was used to obtain the 3D positions and orientations of the femoral and tibial implant components, which were in turn used to obtain kinematic measures (contact locations and magnitude of excursion) for each condyle.


J. Muir J. Vincent J. Schipper V. Gobin M. Govindarajan K. Fiaes J. Vigdorchik

Anteroposterior (AP) radiographs remain the standard of care for pre- and post-operative imaging during total hip arthroplasty (THA), despite known limitation of plain films, including the inability to adequately account for distortion caused by variations in pelvic orientation. Of specific interest to THA surgeons are distortions associated with pelvic tilt, as unaccounted for tilt can significantly alter radiographic measurements of cup position. Several authors have proposed methods for correcting for pelvic tilt on radiographs but none have proven reliable in a THA population. The purpose of our study was to develop a method for correcting pelvic tilt on AP radiographs in patients undergoing primary or revision THA. CT scans from 20 patients/cadaver specimens (10 male, 10 female) were used to create 3D renderings, from which synthetic radiographs of each pelvis were generated (Figure 1). For each pelvis, 13 synthetic radiographs were generated, showing the pelvis at between −30° and 30° of pelvic tilt, in 5° increments. On each image, 8 unique parameters/distances were measured to determine the most appropriate parameters for calculation of pelvic tilt (Figure 2). The most reliable and accurate of these parameters was determined via regression analysis and used to create gender-specific nomograms from which pelvic tilt measurements could be calculated (Figure 3). The accuracy and reliability of the nomograms and correction method were subsequently validated using both synthetic radiographs (n=50) and stereoradiographic images (n=58). Of 8 parameters measured, the vertical distance between the superior margin of the pubic symphysis and the transischial line (PSTI) was determined to be the most reliable (r=−0.96, ICC=0.94). Mean tilt calculated from synthetic radiographs (0.6°±18.6°) correlated very strongly (r=0.96) with mean known tilt (0.5°±17.9°, p=0.98). Mean pelvic tilt calculated from AP EOS images (3.2°±9.9°) correlated strongly (r=0.77) with mean tilt measured from lateral EOS images (3.8°±8.2°, p=0.74). No gender differences were noted in mean tilt measurements in synthetic images (p=0.98) or EOS images (p=0.45). Our method of measuring PSTI and POD on AP images and applying these measurements to nomograms provides a validated and reliable method for estimating the degree of pelvic tilt on AP radiographs during THA.

For any figures or tables, please contact authors directly.


M. Lavdas B. Lanting D. Holdsworth M. Teeter

Introduction

Infections affect 1–3% of Total Knee Arthroplasty (TKA) patients with severe ramifications to mobility. Unfortunately, reinfection rates are high (∼15%) suggesting improved diagnostics are required. A common strategy to treat TKA infection in North America is the two-stage revision procedure involving the installation of a temporary spacer in the joint while the infection is treated for 6–12 weeks before permanent revision. Subdermal temperature increases during infection by 1–4°C providing a potential indicator for when the infection has been cleared. We propose an implantable temperature sensor integrated into a tibial spacer for telemetric use. We hypothesized that suitable sensing performance for infection monitoring regarding precision and relative accuracy can be attained using a low power, compact, analog sensor with <0.1ºC resolution.

Materials & Methods

An experimental sensor was selected for our implanted application due to its extremely low (9 μA) current draw and compact chip package. Based upon dynamic range it was determined that the analog/digital converter must be a minimum of 11 bits to deliver suitable (<0.1ºC) resolution. A 12-bit ADC equipped microcontroller was selected. The MCP9808 (Microchip Technology, Chandler, AZ, USA) delivers manufacturer characterized thermal data in decimal strings through serial communication to the same microcontroller. The rated accuracy of the MCP9808 sensors in the required temperature range is max/typ +/− 0.5/0.25ºC with a precision of +/− 0.05ºC delivered at a resolution of 0.0625ºC. Within a thermally insulated chamber with a resistive heating element, the following experiment was conducted: Using empirical plant modelling tools, simulation and implementation an effective PI control scheme was implemented to create a highly precise temperature chamber. With MCP9808 as reference, the temperature in the thermal chamber was driven to 20 different temperatures between 35 and 40ºC for 10 minutes each and sampled at 5 Hz. This trial was repeated three times over three days. Transient data was discarded so as only to evaluate the steady state characteristics, wavelet denoising was applied, and a regression between the reference MCP9808 temperature response vs the experimental sensor intended for implantation was tabulated in Matlab.


J. Zhang M. Bhowmik-Stoker L. Yanoso-Scholl C. Condrey K. Marchand R. Marchand

Introduction

Valgus deformity in an end stage osteoarthritic knee can be difficult to correct with no clear consensus on case management. Dependent on if the joint can be reduced and the degree of medial laxity or distension, a surgeon must use their discretion on the correct method for adequate lateral releases. Robotic assisted (RA) technology has been shown to have three dimensional (3D) cut accuracy which could assist with addressing these complex cases. The purpose of this work was to determine the number of soft tissue releases and component orientation of valgus cases performed with RA total knee arthroplasty (TKA).

Methods

This study was a retrospective chart review of 72 RATKA cases with valgus deformity pre-operatively performed by a single surgeon from July 2016 to December 2017. Initial and final 3D component alignment, knee balancing gaps, component size, and full or partial releases were collected intraoperatively. Post-operatively, radiographs, adverse events, WOMAC total and KOOS Jr scores were collected at 6 months, 1 year and 2 year post-operatively.


J. Zhang S. Persohn M. Bhowmik-Stoker J. Otto M. Paramasivam A. Wahdan R.H. Choplin P.R. Territo

Introduction

Component position and overall limb alignment following Total Knee Arthroplasty (TKA) have been shown to influence device survivorship and clinical outcomes. However current methods for measuring post-operative alignment through 2D radiographs and CTs may be prone to inaccuracies due to variations in patient positioning, and certain anatomical configurations such as rotation and flexion contractures. The purpose of this paper is to develop a new vector based method for overall limb alignment and component position measurements using CT. The technique utilizes a new mathematical model to calculate prosthesis alignment from the coordinates of anatomical landmarks. The hypothesis is that the proposed technique demonstrated good accuracy to surgical plan, as well as low intra and inter-observer variability.

Methods

This study received institutional review board approval. A total of 30 patients who underwent robotic assisted TKA (RATKA) at four different sites between March 2017 and January 2018 were enrolled in this prospective, multicenter, non-randomized clinical study. CT scans were performed prior to and 4–6 weeks post-operatively. Each subject was positioned headfirst supine with the legs in a neutral position and the knees at full extension. Three separate CT scans were performed at the anatomical location of the hip, knee, and ankle joint. Hip, knee, and ankle images were viewed in 3D software and the following vertices were generated using anatomical landmarks: Hip Center (HC), Medial Epicondyle Sulcus (MES), Lateral Epicondyle (LE), Femur Center (FC), Tibia Center (TC), Medial Malleolus (MM), Lateral Malleolus (LM), Femur Component Superior (FCS), Femur Component Inferior (FCI), Coronal Femoral Lateral (CFL), Coronal Femoral Medial (CFM), Coronal Tibia Lateral (CTL), and Coronal Tibia Medial (CTM). Limb alignment and component positions were calculated from these vertices using a new mathematical model.

The measurements were compared to the surgeons’ operative plan and component targeted positions for accuracy analysis. Two analysts performed the same measurements separately for inter-observer variability analysis. One of the two analysts repeated the measurements at least 30 days apart to assess intra-observer variability. Correlation analysis was performed on the intra-observer analysis, while Bland Altman analysis was performed on the inter-observer analysis.


M. LaCour J. Nachtrab M. Ta R. Komistek

Introduction

Traditionally, conventional radiographs of the hip are used to assist surgeons during the preoperative planning process, and these processes generally involve two-dimensional X-ray images with implant templates. Unfortunately, while this technique has been used for many years, it is very manual and can lead to inaccurate fits, such as “good” fits in the frontal view but misalignment in the sagittal view. In order to overcome such shortcomings, it is necessary to fully describe the morphology of the femur in three dimensions, therefore allowing the surgeon to successfully view and fit the components from all possible angles.

Objective

The objective of this study was to efficiently describe the morphology of the proximal femur based on existing anatomical landmarks for use in surgical planning and/or forward solution modeling.


M. LaCour J. Nachtrab M. Ta R. Komistek

Introduction

Previous research defines the existence of a “safe zone” (SZ) pertaining to acetabular cup implantation during total hip arthroplasty (THA). It is believed that if the cup is implanted at 40°±10° inclination and 15°±10° anteversion, risk of dislocation is reduced. However, recent studies have documented that even when the acetabular cup is placed within the SZ, high incidence dislocation and instability remains due to the combination of patient-specific configuration, cup diameter, head size, and surgical approach. The SZ only investigates the angular orientation of the cup, ignoring translational location. Translational location of the cup can cause a mismatch between anatomical hip center and implanted cup center, which has not been widely explored.

Objective

The objective of this study is to define a zone within which the implanted joint center can be altered with respect to the anatomical joint center but will not increase the likelihood of post-operative hip separation or dislocation.


O. Darwish J. Langhorn D. Van Citters A. Metcalfe

Introduction

Patella implant research is often overlooked despite its importance as the third compartment in a total knee replacement. Wear and fracture of resurfaced patellae can lead to implant failure and revision surgeries. New simulation techniques have been developed to analyze the performance of patella designs as they interact with the trochlear groove in total knee components, and clinical validation is sought to ensure that these simulations are appropriate. The objective of this work was to subject several patellar designs to patient-derived deep knee bend (DKB) inputs on a 6 degree of freedom (DOF) simulator and compare the resultant wear scars to clinical retrievals.

Materials and Methods

Previously reported DKB profiles were developed based on in vivo patellofemoral data and include a wide range of patient variability. The profiles chosen for this body of work were based on the stress in the patellar lateral facet; maximizing this stress whilst maintaining the ability to run the profile stably on the simulator. Load/kinematic profiles were run on three patellar designs (n=3 per group) for 220,000 cycles at 0.8Hz on an AMTI VIVO joint simulator. A comparison cohort of clinically retrieved devices of the same design was identified in an IRB-approved database. Exclusion criteria included gross delamination, cracking secondary to oxidation, and surgeon-reported evidence of malalignment leading to mal-tracking. 29 Patellae were included for analysis: PFC® All Poly (n=14), ATTUNE® Anatomic (n=6), and ATTUNE®Medialized Dome (n=9). Mean in vivo duration was 70.1 months. Patellae were analyzed under optical microscope in large-depth-of-field mode to map the surface damage profile. Burnishing ‘heat-maps’ were generated for retrievals and simulated patellae by normalizing the patellar size and overlaying silhouettes from each component of the same type using a custom-developed MatLAB code.


O. Darwish H. Grover D. McHugh E. Carlson E. Dacus D. Van Citters

Introduction

Large-scale retrieval studies have shown backside wear in tibial inserts is dependent on the surface roughness of the tibial tray. Manufacturers acknowledge this design factor and have responded with the marketing of mirror-finished trays, which are clinically proven to have lower wear rates in comparison to historically “rough” (e.g. grit blasted) trays. While the relationship between wear and surface roughness has been explored in other polymer applications, the quantitative dependence of backside wear rate on quantitative surface finish has not yet been established for modern devices. The present study evaluates small-excursion polyethylene wear on pucks of a variety of surface roughnesses. The objective of this study is to determine where inflection points exist in the relationship between surface roughness and wear rate.

Materials and Methods

An AMTI Orthopod, 6-station pin on disk tribotest was designed to mimic worst-case in vivo backside wear conditions based on published retrieval analyses. Titanium (Ti6Al4V) pucks with six different surface roughness preparations (Sa ranges from 0.06 um to 1.06 um) were characterized with white light profilometry. Never implanted polyethylene tibial inserts (never irradiated, EtO sterilized) were machined into 6 mm diameter cylindrical pins. Fretting-type motion was conducted in a 2mm square pattern at 2Hz under 100 N constant force in 25% bovine serum lubricant for 1.35 million cycles in triplicate. Mass measurements were taken every 225 thousand cycles.


Y. Yamamuro T. Kabata Y. Kajino D. Inoue T. Ohmori T. Ueno J. Yoshitani K. Ueoka H. Tsuchiya

Objective

Open-wedge high tibial osteotomy (OWHTO) involves performing a corrective osteotomy of the proximal tibia and removing a wedge of bone to correct varus alignment. Although previous studies have investigated changes in leg length before and after OWHTO using X-rays, none has evaluated three-dimensional (3D) leg length changes after OWHTO. We therefore used 3D preoperative planning software to evaluate changes in leg length after OWHTO in three dimensions.

Methods

The study subjects were 55 knees of 46 patients (10 men and 36 women of mean age 69.9 years) with medial osteoarthritis of the knee or osteonecrosis of the medial femoral condyle with a femorotibial angle of >185º and restricted range of motion (extension <–10º, flexion <130º), excluding those also suffering from patellofemoral arthritis or lateral osteoarthritis of the knee. OWHTO was simulated from computed tomography scans of the whole leg using ZedHTO 3D preoperative planning software. We analyzed the hip-knee-ankle angle (HKA), flexion contracture angle (FCA), mechanical medial proximal tibial angle (mMPTA), angle of correction, wedge length, 3D tibial length, 3D leg length, and 3D increase in leg length before and after OWHTO. We also performed univariate and multivariate analysis of factors affecting the change in leg length (preoperative and postoperative H-K-A angle, wedge length, and correction angle).


A. Sato T. Kanazawa T. Koya T. Okumo S. Kato F. Kawashima H. Tochio Y. Hoshino K. Tomita H. Takagi

Introduction

Total knee arthroplasty (TKA) is one of the most successful surgeries to relieve pain and dysfunction caused by severe arthritis. However, it is a still big problem that there is a possibility of death in pulmonary embolism (PE) after TKA. We previously reported that there was more incidence of asymptomatic PE than estimated in general by detail examinations. But it was difficult to whom we decided to perform additional examinations except the patients with some doubtful symptoms. Therefore, we investigated detail of PE patients after primary TKA to find out anything key point in PE.

Methods

Consecutive ninety-nine patients who underwent primary TKA from January 2015 to March 2018 were applied. There were 23 male and 76 females included, and the mean age was 73.7 years old. There were 96 cases of osteoarthritis, 2 cases of osteonecrosis and one of rheumatoid arthritis. A single knee surgery team performed all operations with cemented type prostheses and air tourniquet during operation. There were 35 cases of one-staged bilateral TKA and 64 of unilateral TKA. Detail examinations with contrast enhanced CT (CE-CT) and venous ultrasonography (US) were performed at the 3rd day after surgery. Next, we applied ultra sound cardiogram (UCG) to the patients diagnosed as PE by CE-CT, we checked right ventricular overload (RVO) to treat PE. These images were read by a single senior radiologist team.


K. Yoshida K. Fukushima R. Sakai K. Uchiyama N. Takahira M. Ujihira

Introduction

Primary stability is achieved by the press fit technique, where an oversized component is inserted into an undersized reamed cavity. The major geometric design of an acetabular shell is hemispherical type. On the other one, there are the hemielliptical type acetabular shells for enhanced peripheral contact.

In the case of developmental dysplasia of the hip (DDH), the aseptic loosening may be induced by instability due to decreased in the contact area between the acetabular shell and host bone.

The aim of this study was to assess the effect of reaming size on the primary stability of two different outer geometry shells in DDH models.

Materials and methods

The authors evaluated hemispherical (Continuum Acetabular Shell, Zimmer Biomet G.K.) and hemielliptical (Trabecular Metal Modular Acetabular Shell, Zimmer Biomet G.K.) acetabular shells. Both shells had a 50 mm outer diameter and same tantalum 3D highly porous surface.

An acetabular bone model was prepared using a solid rigid polyurethane foam block with 20 pcf density (Sawbones, Pacific Research Laboratories Inc.) as a synthetic bone substrate. Press fit conditions were every 1 mm from 4 mm under reaming to 2 mm over reaming. To simulate the acetabular dysplasia the synthetic bone substrate was cut diagonally at 40°. Where, the acetabular inclination and cup-CE angle were assumed to 40° and 10°, respectively.

Acetabular components were installed with 5 kN by a uniaxial universal testing machine (Autograph AGS-X, Shimadzu Corporation).

Primary stability was evaluated by lever-out test. The lever-out test was performed in 4 mm undersized to 2 mm oversized reaming conditions. Lever out moment was calculated from the multiplication of the maximum load and the moment arm for primary stability of the shell. The sample size was 6 for each shell type.


K. Roussi C. Saunders K. Boese J. Watson

Anterior cruciate ligament (ACL)-retaining total knee arthroplasty (TKA) has been associated with more physiologic motion patterns, more normal knee kinematics, and higher patient preference than ACL-sacrificing implant designs. However, it remains unclear how many osteoarthritic patients can be expected to have an intact ACL at the time of surgery in order to undergo ACL-retaining TKA. A systematic literature review was performed in November 2018 using the PubMed and EMBASE databases. Papers written in English, with more than 10 adult patients relevant to the research question were included, whereas cadaveric, revision, animal and simulation studies and conference abstracts were excluded. Data on ACL retention during intraoperative assessment or MRI scans were extracted and analysed using proportional meta-analyses. Twenty-six eligible publications (4167 knees) were included: 20 using intraoperative assessment, 4 using MRI, and 2 using both. Intraoperative assessment of the ACL during TKA showed that the ligament was present in 78% (95% confidence interval [CI]: 72–84%) and intact in 55% (95% CI: 45–65%) of the patients examined. MRI scans revealed higher percentages of ACL presence and intactness than intraoperative assessment, with 91% (95% CI: 79–96%) of the ACL being present and 68% (95% CI: 28–92%) intact. Fewer studies reported on MRI results compared to studies reporting on the intraoperative status of the ACL. In conclusion, intraoperative assessment suggests that over half of the osteoarthritic patients have an intact ACL at the time of TKA surgery, some of whom may qualify for bicruciate-retaining arthroplasty.

For any figures or tables, please contact authors directly.


M. Kebbach A. Geier M. Darowski S. Krueger C. Schilling T.M. Grupp R. Bader

Introduction

Persistent patellofemoral (PF) pain is a common postoperative complication after total knee arthroplasty (TKA). In the USA, patella resurfacing is conducted in more than 80% of primary TKAs [1], and is, therefore, an important factor during surgery. Studies have revealed that the position of the patellar component is still controversially discussed [2–4]. However, only a limited number of studies address the biomechanical impact of patellar component malalignment on PF dynamics [2]. Hence, the purpose of our present study was to analyze the effect of patellar component positioning on PF dynamics by means of musculoskeletal multibody simulation in which a detailed knee joint model resembled the loading of an unconstrained cruciate-retaining (CR) total knee replacement (TKR) with dome patella button.

Material and Methods

Our musculoskeletal multibody model simulation of a dynamic squat motion bases on the SimTK data set (male, 88 years, 66.7 kg) [5] and was implemented in the multibody dynamics software SIMPACK (V9.7, Dassault Systèmes Deutschland GmbH, Gilching, Germany). The model served as a reference for our parameter analyses on the impact on the patellar surfacing, as it resembles an unconstrained CR-TKR (P.F.C. Sigma, DePuy Synthes, Warsaw, IN) while offering the opportunity for experimental validation on the basis of instrumented implant components [5]. Relevant ligaments and muscle structures were considered within the model. Muscle forces were calculated using a variant of the computed muscle control algorithm. PF and tibiofemoral (TF) joints were modeled with six degrees of freedom by implementing a polygon-contact model, enabling roll-glide kinematics. Relative to the reference model, we analyzed six patellar component alignments: superior-inferior position, mediolateral position, patella spin, patella tilt, flexion-extension and thickness. The effect of each configuration was evaluated by taking the root-mean-square error (RMSE) of the PF contact force, patellar shift and patellar tilt with respect to the reference model along knee flexion angle.


Y. Huang Y. Zhou D. Yang H. Tang H. Shao S. Guo

Aims

Only a small number of studies exist that report the results of EBM-produced porous coated trabecular titanium cups in primary total hip arthroplasty (THA). This study aims to investigate the patient satisfaction level, clinical function and radiographic outcomes of the patients who underwent THA using an EBM-produced porous coated titanium cup.

Patients and Methods

A total of 32 patients who underwent primary THA with using an EBM-produced porous coated titanium cup from five hospitals between May and December, 2012 were retrospectively reviewed. Five patients were lost prior to the minimum 6-year follow-up. Clinical and radiographic outcomes were analyzed with an average follow-up of 81.48 (range: 77.00–87.00) months.


K. Sipek J.A. Gustafson S.M. McCarthy D.J. Hall H.J. Lundberg B.R. Levine R. Pourzal

Introduction

Total hip arthroplasty (THA) is a commonly performed procedure to relieve arthritis or traumatic injury. However, implant failure can occur from implant loosening or crevice corrosion as a result of inadequate seating of the femoral head onto the stem during implantation. There is no consensus—either by manufacturers or by the surgical community—on what head/stem assembly procedure should be used to maximize modular junction stability. Furthermore, the role of “off-axis” loads—loads not aligned with the stem taper axis—during assembly may significantly affect modular junction stability, but has not been sufficiently evaluated.

Objective

The objective of this study was to measure the three-dimensional (3D) head/stem assembly loads considering material choice—metal or ceramic—and the surgeon experience level.


D. Hall G. Garrigues K. Blanchard E. Shewman G. Nicholson R. Pourzal

Introduction

The combined incidence of anatomic (aTSA) and reverse total shoulder arthroplasties (rTSA) in the US is 90,000 per annum and rising. There has been little attention given to potential long-term complications due to periprosthetic tissue reactions to implant debris. The shoulder has been felt to be relatively immune to these complications due to lower acting loads compared to other joint arthroplasties. In this study, retrieved aTSAs and rTSAs were examined to determine the extent of implant damage and to characterize the nature of the corresponding periprosthetic tissue responses.

Methods

TSA components and periprosthetic tissues were retrieved from 23 (eleven aTSA, twelve rTSA). Damage to the implants was characterized using light microscopy. Head/stem taper junction damage was graded 1–4 as minimal, mild, moderate or marked. Damage on polyethylene (PE) and metal bearing surfaces was graded 1–3 (mild, moderate, marked). H&E stained sections of periprosthetic soft tissues were evaluated for the extent and type of cellular response. A semi-quantitative system was used to score (1=rare to 4=marked) the overall number of particle-laden macrophages, foreign body giant cells, lymphocytes, plasma cells, eosinophils, and neutrophils. Implant damage and histopathological patterns were compared between the two TSA groups using the Mann-Whitney and Spearman tests.


T. Gascoyne S. Parashin M. Teeter E. Bohm E. Laende M. Dunbar T. Turgeon

Purpose

The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery.

Methods

Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained.

In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivoTKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations.


R.W. Cummings K. Dushaj Z. Berliner M. Grosso R. Shah H.J. Cooper M. Heller M.S. Hepinstall

INTRODUCTION

Component impingement in total hip arthroplasty (THA) can cause implant damage or dislocation. Dual mobility (DM) implants are thought to reduce dislocation risk, but impingement on metal acetabular bearings may cause femoral component notching. We studied the prevalence of (and risk factors for) femoral notching with DM across two institutions.

METHODS

We identified 37 patients with minimum 1-year radiographic follow-up after primary (19), revision (16), or conversion (2) THA with 3 distinct DM devices between 2012 and 2017. Indications for DM included osteonecrosis, femoral neck fracture, concomitant spinal or neurologic pathology, revision or conversion surgery, and history of prosthetic hip dislocation. Most recent radiographs were reviewed and assessed for notching. Acetabular anteversion and abduction were calculated as per Widmer (2004). Records were reviewed for dislocations and reoperations.


Pitocchi Wirix-Speetjens Van Lenthe Perez

Introduction

Loosening of the baseplate is one of the most common causes of failure in Reverse Shoulder Arthroplasty. To allow osteo-integration to occur and thus provide long-term stability, initial screws fixation plays a pivotal role. In particular, tightening torque and force of nonlocking screws are two parameters that are considered to have a clear impact on implant stability, yet the relation is not fully understood. For this reason, this study aims to define an experimental set-up, to measure force and torque in artificial bone samples of different quality, in order to estimate ranges of optimal surgical values and give guidelines to maximize screw fixation and therefore initial implant stability.

Methods

A custom-made torque sensor (Figure 1a) was built and calibrated using a lever deadweight system. To measure the compression force generated by the screw head, three thin FlexiForce sensors (Tekscan, South Boston, US) were enclosed between two 3D printed plates with a central hole to allow screw insertion (Figure 1b). The tightening force, represented by the sum of the three sensors, was calibrated using a uniaxial testing machine (Zwick/Roell, Ulm, Germany). Multiple screw lengths (26mm, 32mm and 47mm) were selected in the protocol. Synthetic bone blocks (Sawbones; Malmö, Sweden) of 20 and 30 PCF were used to account for bone quality variation. To evaluate the effect of a cortical bone layer, for each density three blocks were considered with 0 mm (no layer), 1.5 mm and 3 mm of laminate foam of 50 PCF. The holes for the screws were pre-drilled in the same way as in the operation room. For each combination of screw dimensions and bone quality, ten measurements were performed by acquiring the signal of the insertion torque and tightening force until bone breaking.


J. Zhang A. Sawires C. Matzko N. Sodhi J. Ehiorobo M. Mont M. Hepinstall

Background

Manually instrumented knee arthroplasty is associated with variability in implant and limb alignment and ligament balance. When malalignment, patellar maltracking, soft tissue impingement or ligament instability result, this can lead to decreased patient satisfaction and early failure. Robotic technology was introduced to improve surgical planning and execution. Haptic robotic-arm assisted total knee arthroplasty (TKA) leverages three-dimensional planning, optical navigation, dynamic intraoperative assessment of soft tissue laxity, and guided bone preparation utilizing a power saw constrained within haptic boundaries by the robotic arm. This technology became clinically available for TKA in 2016. We report our early experience with adoption of this technique.

Methods

A retrospective chart review compared data from the first 120 robotic-arm assisted TKAs performed December 2016 through July 2018 to the last 120 manually instrumented TKAs performed May 2015 to January 2017, prior to introduction of the robotic technique. Level of articular constraint selected, surgical time, complications, hemoglobin drop, length of stay and discharge disposition were collected from the hospital record. Knee Society Scores (KSS) and range of motion (were derived from office records of visits preoperatively and at 2-weeks, 7-weeks and 3-month post-op. Manipulations under anesthesia and any reoperations were recorded.


I. Ramirez-Martinez S.L. Smith I.A. Trail T.J. Joyce

Introduction

Despite the positive outcomes in shoulder joint replacements in the last two decades, polyethylene wear debris in metal-on-polyethylene artificial shoulder joints is well-known as a limitation in the long-term survival of shoulder arthroplasties systems. Consequently, there is an interest in the use of novel materials as an alternative to hard bearing surfaces such as pyrolytic carbon layer (PyroCarbon).

Materials and Methods

In the present study, the unique Newcastle Shoulder Wear Simulator was used (Smith et al., 2015; Smith et al., 2016) to evaluate the wear behavior of four commercially available PyroCarbon humeral heads 43 mm diameter, articulating against conventional ultra-high molecular weight polyethylene (UHMWPE) glenoid inserts with a radius of curvature of 17.5 mm to form an anatomic total shoulder arthroplasty.

A physiological combined cycled “Repeat-motion-load” (RML) (Ramirez-Martinez et al., 2019) obtained from the typical activities of daily life of patients with shoulder implants was applied as a simulator input. A fifth sample of the same size and design was used as a soak control and subjected to dynamic loading without motion during the wear test. The mean volumetric wear rate of PyroCarbon-on-polyethylene was evaluated over 5 million cycles gravimetrically and calculated on the basis of linear regression, as well as the change in surface roughness (Sa) of the components using a non-contacting white light profilometer throughout the test.


P. Messer-Hannemann H. Weyer M. Morlock

INTRODUCTION

Reaming of the acetabular cavity prior to cementless cup implantation aims to create a defined press-fit between implant and bone. The goal is to achieve full implant seating with the desired press-fit to reduce the risk of early cup loosening and the risk of excessive cup deformation. Current research concentrated on the spherical deviations of the reamed cavity compared to the reamer size, but the direct relationship between nominal press-fit, reamer geometry, cavity shape and bone-implant contact has not yet been investigated. The aim of this study was to determine the influence of the reaming process, the surface coating, and the implantation force on the achieved press-fit situation.

METHODS

Fresh-frozen porcine acetabulae (n = 20) were prepared and embedded. Hemispherical reamers were used and the last reaming step was performed using a vertical drilling machine to ensure a proper alignment of the cavity axis. A hand-guided 3D laser scanner was used (HandySCAN 700, Creaform) to determine the reamer geometry and the cavity shape. Press-fit cups with two different surface coatings (Ø44 mm, Porocoat/Gription, DePuy Synthes) were implanted using a drop tower. The Porocoat cup was implanted with impacts from lower drop heights (low implantation force) and press-fits of 1 mm and 2 mm. The Gription cup, exhibiting a rougher surface, was implanted with low and high implantation forces and a press-fit of 1 mm. Bone-implant contact was analysed by the registration of the cup and cavity surface models, scanned prior to implantation, to the scan of the implanted cup. The cup surface was divided in areas with and without contact to the surrounding cavity. Overhang indicates that there was no adjacent cavity surface surrounding the implanted cup. The transition between contact and a gap at the cup dome was defined as contact depth and used as indicator for the cup seating.


R. Schierjott G. Hettich A. Ringkamp M. Baxmann T.M. Grupp

Introduction

Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS).

Materials & Methods

Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with BGS filling). All series were treated with a pressfit-cup and subjected to dynamic axial load in direction of maximum resultant force during level walking. Minimum load was 300 N and maximum load was increased step-wise from 600 N to 3000 N. Total relative motion between cup and foam, consisting of inducible displacement and migration, was assessed with the optical measurement system gom Aramis (gom GmbH, Braunschweig, DE).


P. Robotti V. Luchin F. Galeotti A. Molinari

AM Open Cell porous Ti Structures were investigated for compressive strength, morphology (i.e. pore size, struts size and porosity), and wear resistance with the aim to improve design capability at support of implant manufacturing.

Specimens were manufactured in Ti6Al4V using a SLM machine. Struts sizes had nominal diameters of 200µm or 100µm, pores had nominal diameters of 700µm, 1000µm or 1500µm. These dimensions were applied to three different open-cell geometrical configurations: one with unit-cells based on a regular cubic arrangement (Regular), one with a deformed cubic arrangement (Irregular), and one based on a fully random arrangement (Fully Random).

Morphological analysis was performed by image analysis applied onto optical and SEM acquired pictures. The analyses estimated the maximum and minimum Feret pores diameter, and the latter was used as one of the key parameters to describe the interconnected network of pores intended for bone colonization.

Outcome revealed the systematic oversizing of the actual struts diameter Vs designed diameter; by opposite min. Feret diameters of the pores resulted significantly smaller than nominal pore diameters, thus better fitting within the range of pores dimension acknowledged to favor the osseointegration. Consequently, the actual total porosity is also reduced.

Many technologic factors are responsible for the morphologic differences design vs actual, among these the influence of melting pool dimension, the struts orientation during building and the layer thickness have a significant impact.

Mechanical compression was performed on porous cylinder samples. Test revealed the Yield Strength and Stiffness are highly sensitive to the actual porosity. Deformation behavior follows densification phenomenon at lower porosity, whereas at higher porosity the Gibson-Ashby model fits for most of the structure tested. The relationship among load direction, struts alignment and the collapse behavior of the unit cell geometries are discussed. Stiffness of the porous structure is evaluated in both quasistatic and cyclic compression.

Wear was investigated according to Taber test method. The abrasion resistance is measured by scratching a ceramic wheel against the different AM porous structures along a circular path. Metal debris eventually loss were quantified by gravimetric analysis at different number of cycles. Correlation among AM porous structure geometry, porosity and wear loss is discussed. All the tested structures showed a debris loss within the limit suggested by FDA for the porous coating in contact with the bone tissue.

The actual AM porous Titanium unit cell geometry and features are a key design input. In combination with all the other design factors of a device they may result helpful in address the stress shielding and prevent metal debris release issues. The study underlines the importance of the research activity in AM to support Design for Additive Manufacturing (DFAM) capability.

For any figures or tables, please contact authors directly.


G.M. Dessinger J.K. Nachtrab M.T. LaCour R.D. Komistek

Introduction

Untreated hip osteoarthritis is a debilitating condition leading to pain, bone deformation, and limited range of motion. Unfortunately, studies have not been conducted under in vivo conditions to determine progressive kinematics variations to a hip joint from normal to pre-operative and post-operative THA conditions. Therefore, the objective was this study was to quantify normal and degenerative hip kinematics, compared to post-operative hip kinematics.

Methods

Twenty unique subjects were analyzed; 10 healthy, normal subjects and 10 degenerative, subjects analyzed pre-operatively and then again post-operatively after receiving a THA. During each assessment, the subject performed a gait (stance and swing phase) activity under mobile, fluoroscopic surveillance. The normal and diseased subjects had CT scans in order to acquire bone geometry while implanted subjects had corresponding CAD models supplied. Femoral head and acetabular cup centers were approximated by spheres based on unique geometries while the component centers were pre-defined as the center of mass. These centers were used to compare femoral head sliding magnitudes on the acetabular cup during the activity for all subjects. Subjects were noted to have separation with changes in center magnitudes of more than 1 mm during gait. Utilizing 3D-to-2D registration techniques, the hip joint kinematics were derived and assessed. This allowed for visualization of normal subject positioning, pre-op bone deterioration, and implant placement within the bones.


S. Zobel G. Huber M. King D. Pfeiffer M. Morlock

Introduction

During revision surgery, the active electrode of an electrocautery device may get close to the implant, potentially provoking a flashover. Incidents have been reported, where in situ retained hip stems failed after isolated cup revision. Different sizes of discoloured areas, probably induced by electrocautery contact, were found at the starting point of the fracture. The effect of the flashover on the implant material is yet not fully understood. The aim of this study was to investigate the fatigue strength reduction of Ti-6Al-4V titanium alloy after electrocautery contact.

Material and Methods

16 titanium rods (Ti-6Al-4V, extra low interstitial elements, according to DIN 17851, ⊘ 5 mm, 120 mm length) were stress-relief annealed (normal atmosphere, holding temperature 622 °C, holding time 2 h) and cooled in air. An implant specific surface roughness was achieved by chemical and electrolytic polishing (Ra = 0.307, Rz = 1.910). Dry (n = 6) and wet (n = 6, 5 µl phosphate buffered saline) flashovers were applied with a hand-held electrode of a high-frequency generator (Aesculap AG, GN 640, monopolar cut mode, output power 300 W, modelled patient resistance 500 Ω). The size of the generated discoloured area on the rod's surface - representative for the heat affected zone (HAZ) - was determined using laser microscopy (VK-150x, Keyence, Japan). Rods without flashover (n = 4) served as control. The fatigue strength of the rods was determined under dynamic (10 Hz, load ratio R = 0.1), force-controlled four-point bending (FGB Steinbach GmbH, Germany) with swelling load (numerical bending stress 852 MPa with a bending moment of 17.8 Nm) until failure of the rods. The applied bending stress was estimated using a finite-element-model of a hip stem during stumbling. Metallurgical cuts were made to analyse the microstructure.


D.T. Wolff J.M. Newman N.V. Shah P.J. Morrissey C.A. Conway R. Gold M. Tretiakov D.D. Sedaghatpour R. Pivec Q. Naziri E. Illical

Purpose

Infections in orthopaedic surgery are costly, debilitating complications. The search for new treatments and prevention strategies has led to the use of antibiotic-filled calcium sulfate (CaS) as a bone void filler that is both safe and effective. The purpose of this study was to examine the available data on the efficacy of this technology.

Methods

A literature search was performed for studies that evaluated the use of antibiotic-loaded CaS cement in orthopaedics published between inception of the databases to 2017. Selected studies included randomized controlled trials (RCTs) and observational studies published in the English language that met the following criteria: 1) patients underwent an orthopaedic procedure; 2) CaS cement with an antibiotic was used; and 3) at least one of our outcomes were mentioned. Outcomes included resolution of infection, complications related to treatment, subsequent surgeries, overall infection rate, fracture union rate, clinical outcomes, and wound complications. A total of 17 studies were included.


J. Deckx M. Jacobs I. Dupraz M. Utz

INTRODUCTION

Statistical shape models (SSM) have become a common tool to create reference models for design input and verification of total joint implants. In a recent discussion paper around Artificial Intelligence and Machine Learning, the FDA emphasizes the importance of independent test data [1]. A leave-one-out test is a standard way to evaluate the generalization ability of an SSM [2]; however, this test does not fulfill the independence requirement of the FDA. In this study, we constructed an SSM of the knee (femur and tibia). Next to the standard leave-one-out validation, we used an independent test set of patients from a different geographical region than the patients used to build the SSM. We assessed the ability of the SSM to predict the shapes of knees in this independent test set.

METHODS

A dataset of 82 computed tomography (CT) scans of Caucasian patients (42 male, 40 female) from 11 different geographic locations in France, Germany, Austria, Italy and Australia were used as training set to make an SSM of the femur and tibia. A leave-one-out test was performed to assess the ability of the SSM to predict shapes within the training set. A test dataset of 4 CT scans of Caucasian patients from Russia were used for the validation. The SSM was fitted onto each of the femur and tibia shapes and the root mean square error (RMSE) was measured.


G.M. Dessinger M.T. LaCour R.D. Komistek

Introduction

Diagnosis of osteoarthritis relies primarily on image-based analyses. X-ray, CT, and MRI can be used to evaluate various features associated with OA including joint space narrowing, deformity, articular cartilage integrity, and other joint parameters. While effective, these exams are costly, may expose the patient to ionizing radiation, and are often conducted under passive, non-weightbearing conditions. A supplemental form of analysis utilizing vibroarthrographic (VAG) signals provides an alternative that is safer and more cost-effective for the patient. The objective of this study is to correlate the kinematic patterns of normal, diseased (pre-operative), and implanted (post-operative) hip subjects to their VAG signals that were collected and to more specifically, determine if a correlation exists between femoral head center displacement and vibration signal features.

Methods

Of the 28 hips that were evaluated, 10 were normal, 10 were diseased, and 8 were implanted. To collect the VAG signal from each subject, two uniaxial accelerometers were placed on bony landmarks near the joint; one was placed on the greater trochanter of the femur and the other along the anterior edge of the iliac crest. The subjects performed a single cycle gait (stance and swing phase) activity under fluoroscopic surveillance. The CAD models of the implanted components were supplied by the sponsoring company while the subject bone models were created from CT scans. 3D-to-2D registration was conducted on subject fluoroscopic images to obtain kinematics, contact area, and femoral center head displacement. The VAG signals were trimmed to time, passed with a denoise filter and wavelet decomposition.


N. Khondakar N.V. Shah T.S. Murtaugh R. Gold A. Aylyarov S.C. Pascal M.A. Harb J.M. Newman J.M. Schwartz A.V. Maheshwari

Summary

A meta-analysis was performed to compare rate of SSI after application of chlorhexidine vs. iodine in total joint arthroplasty. Chlorhexidine had significantly lower odds of SSI.

Introduction

Surgical site infections (SSI) are a significant source of morbidity and mortality. The optimal preoperative skin preparation in lower extremity total joint arthroplasty (TJA) remains debatable between chlorhexidine and iodine-containing solutions. This meta-analysis sought compare SSI rates between chlorhexidine cloth application the night before surgery plus povidone-iodine-alcohol (povidone-iodine) solution at surgery or only povidone-iodine at surgery.


V. Polster D. Guttowski G. Huber J. Nuechtern M. Morlock

Introduction

Revision of total knee endoprostheses (TKA) is increasing in number and causes rising healthcare costs. For constrained prostheses, the use of intramedullar femoral stems is standard. However, there is a big variety of available stem types with regard to length, type of fixation (cemented vs. hybrid) and fixation area (diaphyseal vs. metaphyseal). The aim of this biomechanical study was to investigate the primary stability of revision TKA with different stem types and different femoral bone defects, to find out whether smaller or shorter stems may achieve sufficient stability while preserving bone for re-revision.

Methods

30 right human femora were collected, fresh frozen and divided in six groups, matching for age, gender, height, weight and bone density. In group 1–3 a bone defect of AORI type F2a (15mm medial) and in group 4–6 a defect of AORI type F3 (25mm on both sides) was created. In all six groups the same modular femoral surface component (Endo-Model-W, Waldemar Link) was used, combined with different stem types (100/ 160 mm cemented / uncemented / standard/ anatomical with / without cone). Additionally, one trial was set up, omitting the modular stem. The correct fit of the implants was confirmed by fluoroscopy. After embedding, specimens were mechanically loaded 10mm medially and parallel to the mechanical femoral axis with an axial force of 2700N and a torsional moment of 5.6Nm at a flexion angle of 15° with respect to the coupled tibial plateau according to in-vivo gait load for 10,000 cycles (1Hz) in a servohydraulic testing machine (Bionix, MTS). The relative movement between implant, cement and distal femur was recorded using a stereo video system (Aramis3D,gom). An axial pull-out test at 1mm/min was performed after dynamic loading.


I. Dupraz A. Bollinger M. Utz M. Jacobs J. Deckx

Introduction

A good anatomic fit of a Total Knee Arthroplasty is crucial to a good clinical outcome. The big variability of anatomies in the Asian and Caucasian populations makes it very challenging to define a design that optimally fits both populations. Statistical Shape Models (SSMs) are a valuable tool to represent the morphology of a population. The question is how to use this tool in practice to evaluate the morphologic fit of modern knee designs. The goal of our study was to define a set of bone geometries based on SSMs that well represent both the Caucasian and the Asian populations.

Methods

A Statistical Shape Model (SSM) was built and validated for each population: the Caucasian Model is based on 120 CT scans from Russian, French, German and Australian patients. The Asian Model is based on 80 CT scans from Japanese and Chinese patients. We defined 7 Caucasian and 5 Asian bone models by using mode 1 of the SSM. We measured the antero-posterior (AP) and medio-lateral (ML) dimensions of the distal femur on all anatomies (input models and generated models) to check that those bone models well represent the studied population.

In order to cover the whole population, 10 additional bone models were generated by using an optimization algorithm. First, a combined Asian-Caucasian SSM was generated of 92 patients, equally balanced between male and female, Caucasian and Asian. 10 AP/ML dimensions were defined to obtain a good coverage of the population. For a given AP/ML dimension, Markov chain Monte Carlo sampler was used to find the most average shape with AP/ML dimensions as close as possible to the target dimensions. The difference of the AP/ML dimensions of the generated models to the target dimensions was computed. A chi-squared distribution was used to assess how average the resulting shapes were compared to typical patient shapes.


K. Haeussler T. Pandorf

Introduction

The process of wear and corrosion at the head-neck junction of a total hip replacement is initiated when the femoral head and stem are joined together during surgery. To date, the effects of the surface topography of the femoral head and metal stem on the contact mechanics during assembly and thus on tribology and fretting corrosion during service life of the implant are not well understood. Therefore, the objective of this study was to investigate the influence of the surface topography of the metal stem taper on contact mechanics and wear during assembly of the head-neck junction using Finite Element models.

Materials and Methods

2D axisymmetric Finite Element models were developed consisting of a simplified head-neck junction incorporating the surface topography of a threaded stem taper to investigate axial assembly with 1 kN. Subsequently, a base model and three modifications of the base model in terms of profile peak height and plateau width of the stem taper topography and femoral head taper angle were calculated. To account for the wear process during assembly a law based on the Archard equation was implemented. Femoral head was modeled as ceramic (linear-elastic), taper material was either modeled as titanium, stainless steel or cobalt-chromium (all elastic-plastic). Wear volume, contact area, taper subsidence, equivalent plastic strain, von Mises stress, engagement length and crevice width was analyzed.


K. Haeussler T. Pandorf

Introduction

Lipped liners have the potential to decrease the rate of revision for instability after total hip replacement since they increase the jumping distance in the direction of the lip. However, the elevated lip also may reduce the Range of Motion and may lead to early impingement of the femoral stem on the liner. It is unclear whether the use of a lipped liner has an impact on the level of lever-out moments or the contact stresses. Therefore, the aim of the current study was to calculate these values for lipped liners and compare these results to a conventional liner geometry.

Materials and Methods

3D Finite Element studies were conducted comparing a ceramic lipped liner prototype and a ceramic conventional liner both made from BIOLOX®delta. The bearing diameter was 36 mm. To apply loading, a test taper made of titanium alloy was bonded to a femoral head, also made from BIOLOX®delta. Titanium was modeled with a bilinear isotropic hardening law. For the bearing contact a coefficient of friction of both 0.09 or 0.3 was assumed to model a well and poorly lubricated system. Frictionless contact was modeled between taper and liner. Pre-load was varied between 500 N and 1500 N and applied along the taper axis. While keeping pre-load constant, lever-out force was applied perpendicular to the taper axis until subluxation occurred. Liners were fixed at the taper region. Lever-out moment, equivalent plastic strain and von Mises stress of the taper, bearing contact area and contact area between taper and liner was evaluated.


K.C. Chun H.Y. Kwon K.M. Kim C.H. Chun

Purpose

The aim of this study was to assess the clinical and radiological result of the usage of chip bone graft in non-contained type bone defect in primary or revision total knee arthroplasty patients.

Subjects and Methods

We investigated 32 patients who had underwent primary or revision total knee arthroplasty from March, 2014 to February, 2017 in our hospital, who had non-contained type of defect. The mean age was 73.1 years. 5 of them were males, while 27 of them were females. 7 of them were primary total knee arthroplasty patients, while 25 of them were revision patients. 8 of them had chip bone graft used both in the femur and tibia. 9 of them had chip bone graft used only in the tibia. The other 15 had chip bone graft used only in the femur. Wire-mesh was used in the 9 patients who had chip bone graft used only in the medial side of the tibia. We used KOOS (Knee injury and osteoarthritis outcome score), HSS (Hospital for Special Surgery knee service rating system) and WOMAC scores to assess the clinical result, before the surgery and at the last follow-up. In addition, we had follow-up x-rays and 3D CT done for the patients to check the mean bone union period. In addition, overall radiologic imaging studies were used for complications such as loosening, osteolysis and lesions with radiolucency.


K.C. Chun H.Y. Kwon K.M. Kim C.H. Chun

Purpose

The aim of this study was to compare the clinical outcomes of the revision TKA in which trabecular metal cones and femoral head allografts were used for large bone defect.

Method

Total 53 patients who have undergone revision TKA from July 2013 to March 2017 were enrolled in this study. Among them, 24 patients used trabecular metal cones, and 29 patients used femoral head allografts for large bone defect. There were 3 males and 21 females in the metal cone group, while there were 4 males and 25 females in the allograft group. The mean age was 70.2 years (range, 51–80) in the femoral head allograft group, while it was 79.1 years (range, 73–85) in the metal cone group.

Bone defect is classified according to the AORI classification and clinical outcomes were evaluated with Visual Analogue Scale (VAS), Hospital Special Surgery-score (HSS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS), and ROM. Operation time was also evaluated. We used radiographs to check complications such as migration or loosening. We took follow-up x-rays and 3D CT of the patients, to assess the mean bone union period. Shapiro-Wilk test was done to check normality and Student T-test and Mann Whitney U-test were done for comparison between two groups.


M. Ta J. Nachtrab M. LaCour R. Komistek

Introduction

Conventional hip radiographs allow surgeons, during preoperative planning, to make important decisions. Size and location of implants are routinely measured by overlaying schematics of the implanted components onto preoperative radiographs. Most currently available planning tools are in two-dimensions (2D), using X-ray images and 2D templates of the implants. Determination of the ideal component size requires two radiographic views of the femur: the anterior-posterior (AP) and the lateral direction. The surgeon uses this information to determine component sizes. Even though this approach has been used for many years leading to very good results, this manual process potentially carries multiple shortcomings. The biggest issue with the AP X-ray image is the fact that it is 2D in nature while the measurement's objective is to obtain three-dimensional (3D) parameters.

Objective

The objective of this study is to derive a methodology to automatically select correct THA implant sizes while keeping the anatomical center of each specific patient within a forward solution model (FSM) that predicts post-operative outcomes.


M. Ta J. Nachtrab M. LaCour R. Komistek

Introduction

Obtaining accurate anatomical landmarks may lead to a better morphologic understanding, but this is challenging due to the variation of bony geometries. A manual approach, non-ideal for surgeons or engineers, requires a CT or MRI scan, and landmarks must be chosen based on the 3D representation of the scanned data. Ideally, anatomical landmarking is achieved using either a statistical shape model or template matching. Statistical modeling approaches require multitude of training data to capture population variation. Prediction of anatomical landmarks through template matching techniques has also been extensively investigated. These techniques are based on the minimization or maximization of an objective or cost function. As is the nature of non-rigid algorithms, these techniques can fail in the local maxima if the template and new bone models have noise or outliers. Therefore, a combination of rigid and non-rigid registration techniques is needed, in order to obtain accurate anatomical landmarks and improve the prediction process.

Objective

The objective of this study was to find a way to efficiently obtain accurate anatomical landmarks based on an existing template's landmarks for use in a forward solution model (FSM) to predict patient specific mechanics.


M. Ta J. Nachtrab M. LaCour R. Komistek

Summary

The mathematical model has proven to be highly accurate in measuring leg length before and after surgery to determine how leg length effects hip joint mechanics.

Introduction

Leg length discrepancy (LLD) has been proven to be one of the most concerning problems associated with total hip arthroplasty (THA). Long-term follow-up studies have documented the presence of LLD having direct correlation with patient dissatisfaction, dislocation, back pain, and early complications. Several researchers sought to minimize limb length discrepancy based on pre-operative radiological templating or intra-operative measurements. While often being a common occurrence in clinical practice to compensate for LLD intra-operatively, the center of rotation of the hip joint has often changes unintentionally due to excessive reaming. Therefore, the clinical importance of LLD is still difficult to solve and remains a concern for clinicians.


J.A. Gustafson B.R. Levine R. Pourzal H.J. Lundberg

Introduction

Modular junctions in total hip replacement (THR) have been a primary source of fretting and corrosion which can lead to implant failure. Fretting is a result of unintended micromotion between the femoral head and stem tapers and is suspected to result after improper taper seating during assembly. Two design factors known to influence in-vitro taper assembly mechanics are relative taper alignment—mismatch angle—and the surface finish—micro-grooves. However, these factors have not been systematically evaluated together.

Objective

The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of taper mismatch angle and taper surface finish—smooth and rough—on the modular junction mechanics during assembly.


F. Conteduca A. Ferretti F. Iannotti

Alpha Lipoic Acid (L.A.) is an effective natural antioxidant discovered in the human body in 1951 from L.J. Reed and I.C. Gunslaus from liver.

It is inside broccoli, spinach and red meats, especially liver and spleen.

Actually it is largely used as antioxidant in antiaging products according to the low toxicity level of the product.

The present study take into consideration the possibility to reduce oxidation of medical irradiated UHMWPE GUR 1050, mixing together polyethylene powder and Alpha Lipoic Acid powder.

The study is composed of two parts.

Part 1 Thermostability of alpha lipoic acid during polyethylene fusion Part 2 detection of oxygen level in artificially aged irradiated polyethylene

Solid pieces were made with Gur 1050 powder (Ticona Inc., Bayport, Tex, USA) and mixed with Alpha Lipoic Acid (Talamonti, Italy, Stock 1050919074) 0,1%-­‐0,3%-­‐0,5%-­‐1%-­‐2% and gamma ray irradiated with 30 kGy (Isomedix, Northborough, MA).

An owen (80° Celsius) was used to produce an aging effect for 35 days in the doped and control samples (Conventional not doped polyethylene). This process simulate an aging effect of 10 years into the human body.

Part 1 : THERMAL STABILITY : a Fourier Transfer Infra Red (FTIR) test was made in pieces molded in a cell at 150° and 200°Celsius and pressure of 200 MPa comparing to the UHMWPE powder mixed with alpha lipoic acid. The presence of Alpha Lipoic Acid in the polyethylene was found at any depth in the manufacts.

Part 2 : OXIDATION OF THE SURFACE : After 5 weeks at 80° Celsius in a owen (ASTM standard F-­‐2003-­‐02)A FOURIER TRANSFER INFRA RED TEST (FTIR) was made in the superficial layer and deeper on the undersurface of doped 0,1% and conventional UHMWPE.

The antioxidation limit is defined as the ratio of the area under 1740cm/−­‐1 carbonyl and 1370 cm/−­‐1 Methylene absorbance peaks.

In conventional UHMWPE oxidation is detected on the surface and decreases in the deeper layers down to zero under 1500 Micron.

In the doped UHMWPE, FTIR demonstrate a very low oxidation limit on the surface and at any depth, comparing to conventional UHMWPE.

The examples show that Lipoic Acid is effective as antioxidant in irradiated UHMWPE and it is stable with respect to thermal treatment.

For any figures or tables, please contact authors directly.


F. Conteduca R. Conteduca R. Marega

The Step Holter is a software and mobile application that can be used to easily study gait analysis.

The application can be downloaded for free on the App Store and Google Play Store for iOS and Android devices.

The software can detect with an easy calibration the three planes to detect the movement of the gait.

Before proceeding with the calibration, the smartphone can be placed and fixed with a band or stowed into a long sock with its top edge at the height of the joint line, in the medial side of the tibia.

The calibration consists in bending the knee about 20 to 30 degrees and then making a rotation movement, leaving the heel fixed to the ground as a rotation fulcrum.

After calibration, the program records data related to lateral flexion, rotation, and bending of the leg.

This data can be viewed directly from the smartphone screen or transmitted via a web link to the Step Holter web page www.stepholter.com by scanning a personal QR code.

The web page allows the users to monitor the test during its execution or view data for tests done previously.

By pressing the play button, it is possible to see a simulation of the patient's leg and its movement.

With the analyze button, the program is capable of calculating the swing and stance phase of every single step, providing a plot with time and percentages.

Finally, with the Get Excel button, test data can be conveniently exported for more in-depth research.

The advantage of this application is not only to reduce the costs of a machine for the study of gait analysis but also being able to perform tests quickly, without expensive hardware or software and be used in specific spaces, without specialized personnel.

Furthermore, the application can collect important data concerning rotation that cannot be highlighted with the classic gait analysis.

The versatility of a smartphone allows tests to be carried out not only during walking but also by climbing or descending stairs or sitting down or getting up from a chair.

This software offers the possibility to easily study any kind of patients; Older patients, reluctant to leave their homes for a gait analysis can be tested at home or during an office control visit.

Step Holter could be one small step for patients, one giant leap for gait study simplicity.

For any figures or tables, please contact authors directly.


F. Schroder C. Post F.F.J. Simonis F.B.M. Wagenaar R. Huis in'tVeld N. Verdonschot

Introduction

Instability, loosening, and patellofemoral pain belong to the main causes for revision of total knee arthroplasty (TKA). Currently, the diagnostic pathway requires various diagnostic techniques such as x-rays, CT or SPECT-CT to reveal the original cause for the failed knee prosthesis, but increase radiation exposure and fail to show soft-tissue structures around TKA. There is a growing demand for a diagnostic tool that is able to simultaneously visualize soft tissue structures, bone, and TKA without radiation exposure. MRI is capable of visualising all the structures in the knee although it is still disturbed by susceptibility artefacts caused by the metal implant. Low-field MRI (0.25T) results in less metal artefacts and offers the ability to visualize the knee in weight-bearing condition. Therefore, the aim of this study is to investigate the possibilities of low field MRI to image, the patellofemoral joint and the prosthesis to evaluate the knee joint in patients with and without complaints after TKA.

Method

Ten patients, eight satisfied and two unsatisfied with their primary TKA, (NexGen posterior stabilized, BiometZimmer) were included. The patients were scanned in sagittal, coronal, and transversal direction on a low field MRI scanner (G-scan Brio, 0.25T, Esaote SpA, Italy) in weight-bearing and non-weight-bearing conditions with T1, T2 and PD-weighted metal artefact reducing sequences (TE/TR 12–72/1160–7060, slice thickness 4.0mm, FOV 260×260×120m3, matrix size 224×216). Scans were analysed by two observers for:

- Patellofemoral joint: Caton-Descamps index and Tibial Tuberosity-Trochlear Groove (TT-TG) distance.

- Prosthesis malalignment: femoral component rotation using the posterior condylar angle (PCA) and tibial rotation using the Berger angle.

Significance of differences in parameters between weight-bearing and non-weight-bearing were calculated with the Wilcoxon rank test. To assess the reliability the inter and intra observer reliability was calculated with a two-way random effects model intra class correlation coefficient (ICC). The two unsatisfied patients underwent revision arthroplasty and intra-operative findings were compared with MRI findings.


M. Decker M. Walzak A. Khalili R. Klassen M. Teeter R.W. McCalden B. Lanting

Introduction

HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise mechanical properties, leave oxidation-prone residual free radicals, or both. Reports of mechanical failure of HXLPE acetabular liner rims raise concerns about thermal free radical stabilization and in vivo oxidization on implant properties. The purpose of this study is to explore the differences in the mechanical, physical and chemical properties of HXLPE acetabular liner rims after extended time in vivo between liners manufactured with different thermal free radical stabilization techniques.

Material and Methods

Remelted, single annealed and sequentially annealed retrieved HXLPE acetabular liners with in vivo times greater than 4.5 years were obtained from our implant retrieval laboratory. All retrieved liners underwent an identical sanitation and storage protocol. For mechanical testing, a total of 55 explants and 13 control liners were tested. Explant in vivo time ranged from 4.6 – 14.0 years and ex vivo time ranged from 0 – 11.6 years. Rim mechanical properties were tested by microindentation hardness testing using a Micromet II Vickers microhardness tester following ASTM standards. A subset of 16 explants with ex vivo time under one year along with five control liners were assessed for oxidation by FTIR, crystallinity by Raman spectroscopy, and evidence of microcracking by SEM.


W. Deng Z. Wang Y. Zhou H. Shao D. Yang H Li

Background

Core decompression (CD) is effective to relieve pain and delay the advent of total hip arthroplasty (THA) for osteonecrosis of the femoral head (ONFH). However, the influence of CD on the subsequent THA has not been determined yet.

Methods

Literatures published up to and including November 2018 were searched in PubMed, Embase and the Cochrane library databases with predetermined terms. Comparative studies of the clinical outcomes between conversion to THA with prior CD (the Prior CD group) and primary THA (the Control group) for ONFH were included. Data was extracted systematically and a meta- analysis was performed.


C. DiGeorgio J. Yegres J. VanDeven N. Stroud E. Cheung S. Grey J.C. Yoo R. Deshmukh L. Crosby C. Roche

Introduction

Little guidance exists regarding the minimum screw length and number necessary to achieve fixation with reverse shoulder arthroplasty (rTSA). The goal of this study is to quantify the pre- and post-cyclic baseplate displacements associated with two baseplate designs of different sizes using multiple screw lengths and numbers in a low density polyurethane bone substitute model.

Methods

The test was conducted according to ASTM F 2028–17. The baseplate displacements of standard and small reverse shoulder constructs (Equinoxe, Exactech, Inc.) were quantified in a 15pcf polyurethane block (Pacific Research, Inc.) before and after cyclic testing with an applied load of 750N for 10,000 cycles. Baseplates were constructed using 2 or 4 screws with 3 different poly-axial locking compression screw lengths: 4.5×18mm, 4.5×30mm, and 4.5×46mm. Five of each configuration were tested for a total of 30 specimens for each baseplate. A two-tailed, unpaired student's t-test (p<0.05) compared baseplate displacements before and after cyclic loading in both the superior-inferior (S/I) and anterior-posterior (A/P) directions. The standard and small results were then compared.


C. Herrero J. Lavery A. Anoushiravani R. Davidovitch

We investigated whether a novel, real-time fluoroscopy based navigation system optimized component positioning and leg length in fluoroscopically aided Direct Anterior Approach Total Hip Arthroplasty (DAA-THA). We retrospectively reviewed 75 fluoroscopically assisted DAA-THA performed by a single surgeon: 37 procedures used the software intraoperatively to overlay anteversion, inclination, and leg length information over the existing fluoroscopic radiograph with the aim of enhancing component positioning. The control group consisted of 38 procedures from the single surgeon's patient pool who had undergone non-navigated fluoroscopic assisted DAA-THA one month prior to the system's trial. We used the software to compute each data point on an immediate post operative AP radiograph to replicate the intra operative measurement process. Our results demonstrate that the navigation group measurements were significantly closer to the target numbers with less variation. The mean values were significantly closer to target values anteversion (control: 14°, navigated: 19.1°), inclination (control: 37.7°, navigated: 40.8°) and leg length discrepancy (control: 4.7mm, navigated: 0.1mm). The mean difference from target value were also statistically significant: for anteversion (control: −6.0°, navigated: −0.9°), inclination (control: −2.3°, navigated: 0.8°) and leg length discrepancy (control: 2.7°, navigated: −1.9°). In addition, surgical time was shorter in the navigation group (75.7 vs. 74 minutes; p=0.001). The p values were all statistically significant (anteversion 0.0001, inclination 0.0019, LLD < 0.001 and surgical time 0.001). The real-time feedback and calculations provided by the navigation software provided a reproducible precision for component positioning and leg length measurement during DAA-THA.

For any figures or tables, please contact authors directly.


I. Dupraz C. Thorwaechter T.M. Grupp M. Woiczinski V. Jansson P.E. Mueller A. Steinbrueck

Objectives

Restoring more natural kinematics is crucial for the success of knee TKA. The relative size of the tibia to the femur may differ in each patient and requires the possibility to combine different tibia sizes for a given femur size. Therefore, TKA systems need to be designed to allow for different size combinations. In literature some report higher revision rates when the femoral size is greater than the tibia, while others find no impact of the size mismatch on the clinical outcome. The tibio-femoral kinematics resulting from different size combinations has not been analyzed yet. The Columbus Deep Dish implant (Aesculap, Tuttlingen, Germany) is designed to allow a full size compatibility. Therefore we hypothesized that the kinematics would not be affected by the different size combinations. The goal of this study was to investigate the impact on kinematics of different tibio-femoral size combinations with the Columbus Deep Dish implant.

Methods

6 fresh frozen cadavers were tested in a force controlled well established knee rig after implantation of a cruciate retaining, fixed bearing Columbus Deep Dish TKA (Aesculap, Tuttlingen, Germany). Femoro-tibial kinematics were recorded while performing a loaded squat from 30° to 130°. Specifically developed and manufactured inlays allowed simulating different tibia sizes on each bone/tibial implant. For each cadaver, a total of 4 different tibia sizes were tested (1 original size, 3 simulated different sizes). Tibio-femoral internal/external rotation and antero-posterior translation of the medial and of the lateral condyles were computed for all size combinations. The kinematics obtained with the simulated sizes were compared to the kinematics obtained with the original inlay. For each flexion angle from 30° to 130°, the difference between the rotation (resp. translation) obtained with the original inlay was subtracted from the rotation obtained with the simulated tibia size. The mean value and standard deviation of the differences were computed.


C. Friedrich S. Wang A. Francis E. Baker

Prior work in the setting of MRSA (clinical isolate), showed that enhancement of Ti6Al4V with anodized nanotubes apparently disrupts the formation and adhesion of MRSA biofilm. The greater amount of cultured MRSA using effluent released from in vitro nanotube surfaces by sonication, compared with thermal plasma sprayed (TPS), indicated probable disruption of biofilm formation and adhesion. The use of nanosilver nanotubes in vivo in a rabbit model showed that after 1 week of infection followed by 1 week of vancomycin treatment, the nanotube MRSA level was 30% that of TPS, and the nanosilver nanotube MRSA level was only 5% of TPS. The implementation of the technology will enhance the remodeled bone locking ability of rough TPS, with surface nanotubes that provide antibacterial properties and increased bone adhesion.

Lap shear tests of the nanotubes were performed according to ASTM F1044. In multiple tests, circular adhesive films bonded Ti6Al4V bars containing nanotubes with plain Ti6Al4V. The assemblies were suitably arranged in a tensile tester and pulled to shear failure. There were three modes of failure; shear failure within the adhesive, failure of the adhesive from the plain titanium, and shear failure of the nanotubes from the bar. Tests determined the shear strength of the adhesive and its bonding strength to bare titanium. ImageJ software determined the area of each of the three failure modes. From this analysis, the shear strength of the nanotubes of each sample was calculated.

The analyses showed the shear strength of the nanotubes to be as high as 65MPa (9,500psi) with a more typical shear strength of 55MPa (8,000 psi), and several surfaces with 45MPa (6,000 psi). The literature presents models predicting the shear stress in bonded hip stems. Assuming the TPS with nanotubes performs similar to a bonded hip stem, owing to the locking of the bone with the TPS, a typical shear stress prediction for physiological loads is approximately 10 MPa. The nanotube shear strengths were 4–6 times higher than the expected stress during use.

For any figures or tables, please contact authors directly.