header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CERAMIC-CERAMIC BEARINGS: ASSURES LONGEVITY IN PATIENTS < 60

The Current Concepts in Joint Replacement (CCJR) Spring Meeting, Las Vegas, May 2017.



Abstract

Ceramic-on-ceramic bearings provide a solution to the osteolysis seen with traditional metal-on-polyethylene bearings. Sporadic reports of ceramic breakage and squeaking concern some surgeons and this bearing combination can show in vivo signs of edge loading wear which was not predicted from in vitro studies. Taper damage or debris in the taper between the ceramic and metal may lead to breakage of either a ceramic head or insert. Fastidious surgical technique may help to minimise the risk of ceramic breakage. Squeaking is usually a benign complication, most frequently occurring when the hip is fully flexed. Rarely, it can occur with each step of walking when it can be sufficiently troublesome to require revision surgery. The etiology of squeaking is multifactorial origin. Taller, heavier and younger patients with higher activity levels are more prone to hips that squeak. Cup version and inclination are also relevant factors.

Fifty-five ceramic bearings revised at our center were collected over 12 years. Median time to revision was 2.7 years. Forty-six (84%) cases had edge loading wear. The median femoral head wear volume overall was 0.2mm3/yr, for anterosuperior edge loading was 2.0mm3/yr, and the median volumetric wear rate for posterior edge loading was 0.15mm3/yr (p=0.005).

Osteolysis following metal-on-polyethylene total hip arthroplasty (THA) is well reported. Earlier generation ceramic-on-ceramic bearings did produce some osteolysis, but in flawed implants. As 3rd and now 4th generation ceramic THAs come into mid- and long-term service, the orthopaedic community has begun to see reports of high survival rates and very low incidence of osteolysis in these bearings. The technique used by radiologists for identifying the nature of lesions on Computed Tomography (CT) scan is the Hounsfield score which will identify the density of the tissue within the lucent area. Commonly the radiologist will have no access to previous imaging, especially pre-operative imaging if a long time has elapsed. With such a low incidence of osteolysis in this patient group, what, then, should a surgeon do on receiving a CT report on a ceramic-on-ceramic THA, which states there is osteolysis? This retrospective review aims to determine the accuracy of CT in identifying true osteolysis in a cohort of long-term 3rd generation ceramic-on-ceramic uncemented hip arthroplasties in our department.

Methods

Pelvic CT scans were performed on the first 27 patients from a cohort of 301 patients undergoing 15-year review with 3rd generation alumina-alumina cementless THAs. The average follow-up was 15 years (15–17). The CT scans were reviewed against pre-operative and post-operative radiographs and reviewed by a second musculoskeletal specialist radiologist.

Results

Eleven of the CT scans were reported to show acetabular osteolysis, two reported osteolysis or possible pre-existing cyst and one reported a definitive pre-existing cyst. After review of previous imaging including pre-operative radiographs, eleven of the thirteen patients initially reported to have osteolysis were found to have pre-existing cysts or geodes in the same size and position as the reported osteolysis, and a further patient had spot-welds with stress-shielding. One patient with evidence of true osteolysis awaits aspiration or biopsy to determine if he has evidence of ceramic wear or metallosis.

Conclusions

Reports of osteolysis on CT should be interpreted with care in modern ceramic-on-ceramic THA to prevent unnecessary revision. Further imaging and investigations may be necessary to exclude other conditions such as geodes, or stress shielding which are frequently confused with osteolysis on CT scans.