header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

RATIONALE FOR MOLECULAR TARGETING THE COMMUNICATION OF MULTIPLE MYELOMA AND BONE MARROW NICHE: WHY NOTCH?

European Orthopaedic Research Society (EORS) 2016, 24th Annual Meeting, 14–16 September 2016. Part 1.



Abstract

Multiple myeloma (MM) is an incurable hematological tumor stemming from malignant plasma cells. MM cells accumulate in the bone marrow (BM) and shape the BM niche by establishing complex interactions with normal BM cells, boosting osteoclasts (OCLs) differentiation and causing bone disease. This unbalance in bone resorption promotes tumor survival and the development of drug resistance.

The communication between tumor cells and stromal cells may be mediated by: 1) direct cell-cell contact; 2) secretion of soluble factors, i.e. chemokines and growth factors; 3) release of extracellular vesicles/exosomes (EVs) which are able to deliver mRNAs, miRNAs, proteins and metabolites in different body district.

Primary CD138+ MM cells were isolated from patients BM aspirates. MM cell lines were cultured alone in complete RPMI-1640 medium or co-cultured with murine (NIH3T3) or human (HS5) BMSC cell lines or murine Raw264.7 monocytes in DMEM medium supplemented with 10% V/V FBS. Silencing of Jagged1 and Jagged2 was obtained by transient expression of specific siRNAs or by lentiviral transduction using a Dox-inducible system (pTRIPZ). EVs were isolated using differential ultracentrifugation. EVs concentration and size were analyzed using Nano Track Analysis (NTA) system. The uptake of PKH26-labelled MM-derived EVs by HS5 or Raw264.7 was measured after 48 hours by confocal microscopy and flow cytometry. Osteoclast (OCL) differentiation of Raw264.7 cells was induced by 50ng/ml mRANKL, co-culturing with MM cells, CM or EVs. OCLs were stained by TRAP Kit and counted. Bone resorption was assessed by Osteo Assay Surface plates. Flow cytometric detection of apoptotic cells was performed after staining with Annexin V. Gene expression was analyzed by qRT-PCR, while protein levels were determined using flow cytometry ELISA or WB.

Notch oncogenic signaling is dysregulated in several hematological and solid malignancies. Notch receptors and ligands are key players in the crosstalk between tumor cells and BM cells. We have demonstrated that: 1) the dysregulated Jagged ligands on MM cells trigger the activation of Notch receptors in the nearby stromal cells by cell-cell contact. This results in the release of anti-apoptotic and growth stimulating factors, i.e. IL6 and SDF1; 2) MM cells promote the development of bone lesions boosting osteoclast differentiation by secreting soluble factors (i.e. RANKL) and by the activation of Notch signaling mediated by direct contact with osteoclast precursors; 3) Finally, we present evidences that EVs play a crucial role in the dysregulated interactions of MM cells with the microenvironment and that Notch signaling regulates their release and participate in this cross-talk.

These evidences supports the hypothesis that Jagged targeting on MM cells may interrupt the communication between tumor cells and the surrounding milieu, blocking the activation of the oncogenic Notch pathway and finally resulting in the a reduction of MM-associated bone disease and drug resistance.