header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A NOVEL METHOD FOR ACCURATE DETERMINATION OF KNEE PROSTHESIS SIZING IN TKA NAVIGATION

Computer Assisted Orthopaedic Surgery (CAOS) 14th Annual Meeting



Abstract

Clinical outcomes for total knee arthroplasty (TKA) are sensitive to lower extremity alignment, implant positioning, and implant size. Accurate determination of femoral implant size is the focus of this paper. As existing methods (conventional instrumentation, preoperative images, navigation) can be limited by issues including inaccuracy, time required, exposure, and cost, this study assesses a novel method for determining femoral component size using navigation.

We used a commercially available navigation system (Exactech GPS, Blue Ortho, Grenoble, FR, with Total Knee V1.13 software). The system uses surface patches to collect small point clouds, and then computes points that match a given criteria (e.g. the most distal point). For femoral component sizing, the proposed method automatically defines a target area to be digitised on the anterior cortex.

To do this, the surgeon acquires anatomical landmarks (i.e., knee centre, distal condyles, etc.) for all femoral implant parameters but the size. The surgeon then moves the tip of the acquisition instrument near the anterior cortex, and the system computes the distance between the virtual posterior cut and the tip in real time. The theoretical implant size increases in real time as the instrument tip moves anteriorly and decreases as it moves posteriorly. The target area is displayed on the anterior cortex such that it covers all the bone in the medio-lateral direction, is centred on the most proximal part of the theoretical implant in the proximal-distal direction, and covers the current size plus or minus one size. As a result, the target area virtually moves in the proximal-distal direction as the surgeon moves the instrument tip closer to the anterior cortex surface. When the tip is in contact with the anterior surface, acquisition of the point cloud is performed. From a user point of view, the system does not move the target area relative to the bone on the display, but instead adjusts the relative position of the instrument tip, creating the impression that no matter the bone size, the target area does not move and the instrument tip is always guided to the right spot.

The method has been successfully implemented and used on more than 1,400 patients. A preliminary analysis on 189 surgical reports shows in 188 cases (99,5%) the proximal point of the selected implant is inside the target area (which means that the selected size is the one by default, plus or minus one).

We conclude the proposed method as implemented in the Exactech GPS has proven to be clinically effective. It can easily be extended to determination of other points when global criteria can be used to define an optimal area of digitisation determined from previously acquired data.


Email: