header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

AN NF-KB INHIBITOR PREVENTS THE IL-1BETA INDUCED LOSS OF DNA METHYLATION IN HUMAN ARTICULAR CHONDROCYTES

British Orthopaedic Research Society (BORS)



Abstract

In osteoarthritis (OA), articular chondrocytes undergo a phenotypic change and acquire a gene expression repertoire that is characterized by the aberrant expression of numerous catabolic genes including matrix metalloproteinases 3, 9 and 13, ADAMTS-4 and interleukin-1beta (IL1B = gene, IL-1b=protein). Previous studies (Arthritis Rheum 52;3110-24) have shown that epigenetic DNA demethylation at specific CpG sites in the relevant promoters accounts for the aberrant expression and that inflammatory cytokines (TNF-alpha, oncostatin M, IL-1b) can cause both aberrant expression and loss of DNA methylation, at least in vitro (Arthritis Rheum. 2009, 60,3303-3313). If the mechanisms of DNA de-methylation were understood, they might provide a new molecular target for therapeutic intervention. We hypothesize that nuclear translocation of the transcription factor NF-kB is involved in de-methylation because 1) we and others have demonstrated that cytokine-induced expression of IL1B in healthy chondrocytes requires NF-kB and 2) DNA de-methylation during B cell maturation was crucially dependent on the rel/NF-kB family (Nat Genet. 1996, 13,435-441). The aims of the study were to determine whether the NF-kB inhibitor BAY 11-7082 (BAY) could prevent the cytokine-induced loss of DNA de-methylation and thereby show that NF-kB is required for DNA de-methylation.

METHODS

Healthy chondrocytes were isolated from the articular cartilage of six femoral heads, obtained with ethical permission after operations following neck of femur fractures. Chondrocytes were cultured for 5 weeks in 4 separate groups: without treatment (control culture); with 2.5ng/ml IL-1b and 2.5ng/ml oncostatin M (IL-1b+OSM); with 1.0mM BAY alone; and IL-1b+OSM+BAY. Total RNA and genomic DNA were extracted from each sample. Gene expression of IL1B was determined by SybrGreen-based qRT-PCR. The % DNA methylation at a specific CpG site in the IL1B promoter (which had previously been identified as a crucial CpG site) was quantified after bisulfite modification with a pyrosequencer (Biotage). The data for IL1B expression and % DNA methylation were analyzed in Microsoft Excel using Wilcoxon's signed rank test. P values < 0.05 were considered significant.

RESULTS

Although there was considerable variation between samples, expression of IL1B was increased by > 1000 fold in the IL-1b+OSM group compared with control culture, confirming previous results. When BAY was present together with IL-1b+OSM, the increase in IL1B expression was reduced from ∼1000-fold to ∼200-300-fold (P< 0.01). In addition, the % DNA methylation had changed. At the -299 CpG site of IL1B promoter the % methylation was 57% in control culture and 60% in the BAY alone group. IL-1b+OSM caused a decrease to 37% (P<0.01 compared with all other groups), whereas presence of BAY prevented this loss, since the % methylation was 58% in IL-1b+OSM+BAY group.

DISCUSSION

The novel findings of this study are that when nuclear translocation of NF-kB is inhibited by BAY, the IL-1b induced increase of IL1B expression was ameliorated and the loss of DNA methylation in the IL1B promoter was prevented. The data confirm our hypothesis that NF-kB is required for the DNA de-methylation initiated by IL-1b+OSM.