header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

EXPRESSION OF TRANSCRIPTION FACTORS DIFFERS IN SYNOVIAL BIOPSIES FROM DIFFERENT KNEE PATHOLOGIES

The British Association for Surgery of the Knee (BASK) May 2022 Meeting, Newport, Wales, 17–18 May 2022.



Abstract

Abstract

Introduction

Synovitis impacts osteoarthritis symptomatology and progression. The transcription factors controlling synovial gene expression have not been described. This study analyses gene expression in synovium samples from 16 patients with osteoarthritis with 9 undergoing arthroscopic and 8 knee trauma surgery for non-arthritic pathologies.

Methodology

Intra-operative synovial biopsies were immersed in RNAlater at 4oC before storage at -80oC. Total RNA was extracted using RNAeasy. After purification, RT-PCR and quality assessment, cDNA was applied to Affymetrix Clariom D microarray gene chips. Bioinformatics analyses were performed. Linear models were prepared in limma with gender and BMI factors incorporated sequentially for each pathology comparison, generating 12 models of probes differentially expressed at FDR p<0.05 and Bayes number, B>0. Data analysis of differently expressed genes utilized Ingenuity Pathway Analysis and Cytoscape with Cluego and Cytohubba plug-ins.

Results

Amongst the 2084 genes with significantly differential expression (DEG), 135 had transcription regulator capabilities and 121 a nuclear location. IPA analysis of OATKR and arthroscopic tissue comparison DEG identified 12 nuclear transcription factors linked to 31 DEG whose encoded proteins located within cytoplasmic and cell membrane compartments. All 12 were significantly up-regulated and acting in pathways up-regulating transcription of DNA and RNA, cell survival and angiogenesis while down-regulating senescence and apoptosis. NFE2L2, integral to the TGF-beta signalling pathway, was identified as a bottleneck gene.

Conclusion

This analysis indicates the complexity of synovial gene expression regulation and offers target genes and pathways for evaluation during osteoarthritis pathogenesis.