header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

DIFFERENTIAL GENE EXPRESSION IN HUMAN SYNOVIAL TISSUE CULTURE FROM PRIMARY EXPLANT COMPARED WITH WHOLE SYNOVIUM

The British Association for Surgery of the Knee (BASK) May 2022 Meeting, Newport, Wales, 17–18 May 2022.



Abstract

Abstract

Introduction

It is increasingly evident that synovium may play a larger role in the aetiology of osteoarthritis. We compared gene expression in whole tissue synovial biopsies from end-stage knee osteoarthritis and knee trauma patients with that of their paired explant cultures to determine how accurately cultured cells represent holistic synovial function.

Methodology

Synovial tissue biopsies were taken from 16 arthroplasty patients and 8 tibial plateau fracture patients with no osteoarthritis. Pairs of whole tissue fragments were either immediately immersed in RNAlater Stabilisation Solution at 4o C before transfer to -80o C storage until RNA extraction; or weighed, minced and cultured at 500mg tissues/5ml media in a humidified incubator at 37oC, 5% CO2. After sub-culturing total RNA was extracted using RNAeasy Plus Mini Kit with gDNA removal. Following RT-PCR and quality assessment, cDNA was applied to Affymetrix Clariom D microarray gene chips. Bioinformatics analyses were performed.

Results

PCA analysis illustrates the clear separation of expression array data from cultured cells compared with their parental whole tissues and no segregation between cells derived from osteoarthritic or trauma tissues. A differentially expressed gene heat map demonstrated the hierarchical independence of cultured cells from their paired sample parental tissues. The biological pathways enriched by these gene expression differences emphasise the activities of macrophages and lymphocytes lost from culture.

Conclusion

Adherent synovial cells grown from different knee pathologies lose the expression patterns characteristic of their originating pathology. Interpretation of data needs caution as the cells are not representative of whole synovium