header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

EVALUATING THE ACCURACY OF THE SMART TSF SOFTWARE: COMPARISON WITH MANUAL RADIOLOGICAL ANALYSIS METHODS

The British Limb Reconstruction Society (BLRS) Annual Meeting 2022, Brighton, England, 24–25 March 2022.



Abstract

Introduction

The accuracy of hexapod circular external fixator deformity correction is contingent on the precision of radiographic analysis during the planning stage. The aim of this study was to compare the SMART TSF (Smith and Nephew, Memphis, Tennessee) in-suite radiographic analysis methods with the traditional manual deformity analysis methods in terms of accuracy of correction.

Materials and Methods

Sawbones models were used to simulate two commonly encountered clinical scenarios. Traditional manual radiographic analysis and digital SMART TSF analysis methods were used to correct the simulated deformities.

Results

The final outcomes of all six analysis methods across both simulated scenarios were satisfactory. Any differences in residual deformity between the analysis methods are unlikely to be clinically relevant. All three SMART TSF digital analyses were faster to complete than manual radiographic analyses.

Conclusions

With experience and a good understanding of the software, manual radiographic analysis can be extremely accurate and remains the gold standard for deformity analysis. In-suite SMART TSF radiographic analysis is fast and accurate to within clinically relevant parameters. Surgeons can with confidence trust the SMART TSF software to provide analysis and corrections that are clinically acceptable.