header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE EFFECT OF SURGICAL CENTRE VOLUME ON OUTCOME FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION

The Canadian Orthopaedic Association (COA) and Canadian Orthopaedic Research Society (CORS) Virtual Annual Meeting 2020, held online, 19–20 June 2020.



Abstract

Surgery performed in low-volume centres has been associated with longer operating time, longer hospital stays, lower functional outcomes, and higher rates of revision surgery, complications, and mortality. This has been reported consistently in the arthroplasty literature, but there is a paucity of data regarding the relationship between surgical volume and outcome following anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare the ACL reconstruction failure rate between hospitals performing different annual surgical volumes. The hypothesis was that ACL reconstructions performed at low-volume hospitals would be associated with higher failure rates than those performed at high-volume centres.

This level-II cohort study included all patients from the Norwegian Knee Ligament Registry that underwent isolated primary autograft ACL reconstruction between 2004 and 2016. Hospital volume was divided into quintiles based on the number of ACL reconstructions performed annually, defined arbitrarily as: 1–12 (V1), 13–24 (V2), 25–49 (V3), 50–99 (V4), and ≥100 (V5) annual procedures. Kaplan-Meier estimated survival curves and survival percentages were calculated with revision ACL reconstruction as the end point. Mean change in Knee Injury and Osteoarthritis Outcome Score (KOOS) Quality of Life and Sport subsections from pre-operative to two-year follow-up were compared using t-test.

19,204 patients met the inclusion criteria and 1,103 (5.7%) underwent subsequent revision ACL reconstruction over the study period. Patients in the lower volume categories (V1-3) were more often male (58–59% vs. 54–55% p=<0.001) and older (27 years vs. 24–25 years, p=<0.001) compared to the higher volume hospitals (V4-5). Concomitant meniscal injuries (52% vs. 40%) and participation in pivoting sports (63% vs. 56%) were most common in V5 compared with V1 (p=<0.001). Median operative time decreased as hospital volume increased, ranging from 90 minutes at V1 hospitals to 56 minutes at V5 hospitals (p=<0.005). Complications occurred at a rate of 3.8% at low-volume (V1) hospitals versus 1.9% at high-volume (V5) hospitals (p=<0.001). Unadjusted 10-year survival with 95% confidence intervals for each hospital volume category were: V1 – 95.1% (93.7–96.5%), V2 – 94.1% (93.1–95.1%), V3 – 94.2% (93.6–94.8%), V4 – 92.6% (91.8–93.4%), and V5 – 91.9% (90.9–92.9%). There was no difference in improvement between pre-operative and two-year follow-up KOOS scores between hospital volume categories.

Patients having ACL reconstruction at lower volume hospitals did not have inferior clinical or patient reported outcomes, and actually demonstrated a lower revision rate. Complications occurred more frequently however, and operative duration was longer. The decreased revision rate is an interesting finding that may be partly explained by the fact that patients being treated in these small, often rural hospitals, may be of lower demand as suggested by the increased age and decreased participation in pivoting sports. In addition, patients with more complicated pathology such as meniscal tears were more commonly treated in the larger volume hospitals. The most significant limitation of this study is that provider volume was not assessed, and the number of surgeons dividing up the surgical volume at each hospital is not known.


Email: