header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

BONE IN-GROWTH AND IMPLANT STABILITY ENHANCED IN IRREGULAR ULTRA-POROUS TITANIUM COATINGS EVALUATED IN AN INTRA-ARTICULAR OVINE MODEL

The Canadian Orthopaedic Association (COA) and Canadian Orthopaedic Research Society (CORS) Virtual Annual Meeting 2020, held online, 19–20 June 2020.



Abstract

Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively.

Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and toughness. MFCs were fixed in 70% ethanol, processed undecalcified, and polished sections, approximately 70 µm thick (Exakt Micro Grinding system) were carbon-coated. Backscattered electron images were collected on a scanning electron microscope (Hitachi SU3500) at 5 kV and working distance of 5 mm. Bone in-growth within the porous coating was quantified using software (ImageJ). Statistical comparisons were made using a two-way ANOVA and Fisher's LSD post-hoc test (Statistica v.8).

Biomechanical evaluation of the bone-implant interface revealed that by 16 weeks, Gription-coated implants exhibited higher force (2455±1362 N vs. 1002±1466 N, p=0.046) and stress (12.60±6.99 MPa vs. 5.14±7.53 MPa, p=0.046) at failure, and trended towards higher stiffness (11510±7645 N/mm vs. 5010±8374 N/mm, p=.061) and modulus of elasticity (591±392 MPa vs. 256±431 MPa, p=0.61). Similarly, by 16 weeks, bone in-growth in Gription-coated implants was approximately double that measured in Porocoat (6.73±3.86 % vs. 3.22±1.52 %, p=0.045). No statistically significant differences were detected at either 4 nor 8 weeks, however, qualitative observations of the exposed bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. High variability is attributed to implant placement, resulting from the small visual window afforded during surgery, unique curvatures of the condyles, and presence of the extensor digitorum longus tendon which limited access to the LFC.

Ultra-porous titanium coatings, know commercially as Gription and Porocoat, were compared for the first time in a challenging intra-articular ovine model. Gription provided superior fixation strength and bone in-growth, suggesting it may be beneficial in hip replacement surgeries where bone stock quality and quantity may be compromised.


Email: