header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ACCURACY AND RADIOLOGIC OUTCOMES OF PATIENT SPECIFIC INSTRUMENTATION FOR TOTAL ANKLE ARTHROPLASTY

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019.



Abstract

Recent innovations in total ankle replacement (TAR) have led to improvements in implant survivorship, accuracy of component positioning and sizing, and patient outcomes. CT-generated pre-operative plans and cutting guides show promising results in terms of placement enhancement and reproducibility in clinical studies. The purpose of this study was to determine the accuracy of 1) implant sizes used and 2) alignment corrections obtained intraoperatively using the cutting guides provided, compared to what was predicted in the CT generated pre-operative plans.

This is a retrospective study looking at 36 patients who underwent total ankle arthroplasty using a CT generated pre-operative planning system between July 2015 and December 2017. Personalized pre-operative planning data was obtained from the implant company. Two evaluators took measurements of the angle corrected using pre- and post-operative weight bearing ankle AP X-rays. All patients had a minimum three-month follow-up with weightbearing postoperative radiographs. The actual correction calculated from the radiographic assessment was compared with the predicted angles obtained from pre-operative plans. The predicted and predicted alternative component sizes and actual sizes used were also compared. If either a predicted or predicted alternative size was implanted, we considered it to be accurate.

Average age for all patients was 64 years (range 40–83), with a body mass index of 28.2 ± 5.6. All surgeries were performed by two foot and ankle surgeons. The average total surgical time was 110 ± 23 minutes. Pre-operative alignment ranged from 36.7 degrees valgus to 20 degrees varus. Average predicted coronal alignment correction was 0.8 degrees varus ± 9.3 degrees (range, 18.2 degrees valgus to 29 degrees varus) and average correction obtained was 2.1 degrees valgus ± 11.1 degrees. Average post-op alignment was consistently within 5 degrees of neutral. There were no significant differences between the predicted alignments and the postoperative weightbearing alignments. The predicted tibia implant size was accurate in all cases. The predicted sizes were less accurate for talar implants and predicted the actual talar implant size used in 66% of cases. In all cases of predicted talar size mismatch, surgical plans predicted 1 implant size larger than used.

Preliminary analyses of our data is comparable to previous studies looking at similar outcomes. However, our study had higher pre-operative deformities. Despite that, post-op alignments were consistently within 5 degress of neutral with no significant difference between the predicted and actual corrections. Tibial implant sizes are highly accurate while talar implant sizes had a trend of being one size smaller than predicted. Moreover, this effect seems to be more pronounced in the earlier cases likely reflective of increasing surgeon comfort with the implant with each subsequent case. These results confirm that pre-operative cutting guides are indeed helpful in intra-operative implant selection and positioning, however, there is still some room for innovation.


Email: