header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

MITOCHONDRIAL PATHWAY IS INVOLVED IN ADVANCED GLYCATION END PRODUCTS-INDUCED RABBIT ANNULUS FIBROSUS CELL APOPTOSIS IN VITRO

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019.



Abstract

The purpose of this study was to evaluate whether AGEs induce annulus fibrosus (AF) cell apoptosis and to further explore the mechanism by which this process occurs.

AF cells were treated with various concentrations of AGEs for 3 days. Cell proliferation was measured by the Cell Counting Kit-8 (CCK-8) and EdU incorporation assays. Cell apoptosis was examined by the Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3 and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by RT-PCR. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production of AF cell were examined by JC-1 staining and DCFH-DA fluorescent probes, respectively.

Our results indicated that AGEs had inhibitory effects on AF cell proliferation and induced AF cell apoptosis. The molecular data showed that AGEs significantly up-regulated Bax expression and inhibited Bcl-2 expression. In addition, AGEs increased the release of cytochrome c into the cytosol and enhanced caspase-9 and caspase-3 activation. Moreover, treatment with AGEs resulted in a decrease in MMP and the accumulation of intracellular ROS in AF cells. The antioxidant N-acetyl-L-cysteine significantly reversed AGE-induced MMP decrease and AF cell apoptosis.

These results suggest that AGEs induce rabbit AF cell apoptosis and mitochondrial pathways may be involved in AGE-mediated cell apoptosis, which may provide a theoretical basis for diabetic IVD degeneration.


Email: