header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE NATIVE TIBIOFEMORAL KINEMATICS IN BICRUCIATE-RETAINING TOTAL KNEE ARTHROPLASTY

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 1.



Abstract

Background

Total knee arthroplasty (TKA) is an effective surgical procedure to alleviate excruciating pain and correct dysfunction due to severe knee deformity. The satisfaction rate with current TKA is 80%, While 20% of the patients report uncomfortable feeling during stair descending and deeply knee bending.

Preserving the ligaments might allow a restoration close to the natural function, although sacrifice of the ACL is common with the conventional TKA technique. The current bicruciate-retaining (BCR) TKA would be a way to go concerning this issue. This study aimed at evaluating the intraoperative kinematics and joint laxity on BCR TKA if the native function would be replicated and thus assessing the range of motion (ROM) at final followup.

Methods

BCR TKAs were performed in 22 knees (12 women, 10 men, average aged 67.2-year-old) with image-free navigation system (KolibliTM) under general anesthesia. The intraoperative kinematics was evaluated about flexion extension gap (FEG), anterior-posterior translation (APT, bi-condylar rollback) and axial rotation (AR, medial pivot) with passive motion. These kinematic patterns were assessed with the post-operative ROM.

Results

There was no paradoxical anterior translation in any cases. The implant kinematics was regulated to the medial pivot motion at early flexion phase and the bi-condylar rollback motion to full flexion angle. The mean flexion was changed from 132 degrees at preoperation to 126 degrees at followup, and the mean flexion contracture improved from 4 degrees to 1 degree.

Conclusion

BCR TKA were preserved the nature kinematics including the medial pivot motion and rollback mechanism. Postoperative ROM was quite similar when the preoperative knee flexion was not restricted


Email: