header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

INFLUENCE OF FEMORAL HEAD ROUNDNESS ON THE MECHANICAL STATE AND WEAR OF POLYETHYLENE LINER IN HIP PROSTHESIS

The International Society for Technology in Arthroplasty (ISTA), 30th Annual Congress, Seoul, South Korea, September 2017. Part 2 of 2.



Abstract

Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE in the human body after total joint replacement causes serious clinical and biomechanical reactions. Therefore, the wear phenomenon of UHMWPE is now recognized as one of the major factors restricting the longevity of artificial joints. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE.

Materials and Methods

In a previous study (Cho et al., 2016), it was found that roundness (out-of-roundness) of the retrieved UHMWPE acetabular cup liner [Figure 1(a)] had a tendency to increase with increasing roundness of the retrieved metal femoral head [Figure 1(b)]. It appears that roundness of the femoral head contributes to increase of wear of the polyethylene liners. We focused on the roundness of femoral head as a factor influencing the wear of polyethylene liner in hip prosthesis. In this study, further roundness measurements for 5 retrieved metal femoral heads were performed by using a coordinate measuring machine. The elasto-plastic contact analyses between femoral head and polyethylene liner using the finite element method (FEM) were also performed in order to investigate the influence of femoral head roundness on the mechanical state and wear of polyethylene liner in hip prosthesis.

Results

The range of roundness of the 5 retrieved metal femoral heads measured in this study was 14.50∼44.70 µm. Two examples of the results of FEM contact analyses are shown in Figure 2. Figure 2(a) is the results of the repeated contact analysis between femoral head and polyethylene liner under constant axial loading of 1000 N. Figure 2(b) is the results of the repeated contact analysis between femoral head and polyethylene liner under hip joint loading during normal gait. These figures show the distribution of the contact stress (von Mises equivalent stress) in the polyethylene liner. The graph in Figure 3 shows the changes in the maximum contact stress in the polyethylene liner with the flexion/extension angle of femoral head.

Discussion and Conclusions

As the results of a series of the FEM contact analyses, it was found that repeated high contact stresses which exceed the yield stress of UHMWPE caused by roundness of the metal femoral head occurred in the polyethylene liner as shown in Figures 2 and 3. It was also found that the magnitude and amplitude of the repeated contact stresses had a tendency to increase with increasing roundness of the femoral head and axial loading applied to the femoral head. The results of this analytical study suggest that the roundness (out-of- roundness) of the femoral head is associated with accelerating and/or increasing wear of the UHMWPE acetabular cup liner in a hip prosthesis after total hip replacement.

For any figures or tables, please contact authors directly.


Email: