header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MULTISCALE, MULTIDISCIPLINARY RESEARCH INTO BONE MECHANOBIOLOGY DURING NORMAL PHYSIOLOGY AND OSTEOPOROSIS TO ENHANCE BONE REGENERATION AND THERAPEUTIC APPROACHES

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 3, Galway, Ireland, September 2018.



Abstract

While the phenomena of bone adaption to mechanical loading has been long observed, the mechanisms governing bone mechanotransduction during health and disease are not well understood. Our multidisciplinary experimental and computational research strives to enhance understanding of bone mechanobiology, and in particular how this process is affected at the onset of osteoporosis. We have provided an enhanced understanding of bone cell mechanosensation. We have characterised the local mechanical environment of MSCs, osteoblasts and osteocytes in vivo. Most importantly, we have discovered that the matrix composition, expression of mechanosensors and the mechanical environment of osteocytes is altered during osteoporosis. Interestingly, a mechanobiological response restores the homeostatic mechanical environment of the cells in the longer term. Our recent in vitro studies have revealed that estrogen withdrawal from bone cells alters calcium signalling, mineralisation, biochemical responses and osteogenic gene expression when these cells are exposed to an applied fluid shear stress. Our ongoing research is investigating mechanobiology-based therapeutic approaches for treatment of bone pathologies, by (1) targeting mechanoregulatory signalling pathways and (2) developing in vitro tissue regeneration strategies that seek to optimise the mechanical environment (through matrix stiffness, bioreactors) to stimulate osteogenesis.


Email: