header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

INVESTIGATING TROPHIC FACTOR EXPRESSION IN PATIENT-MATCHED ADIPOSE AND BONE MARROW-DERIVED MESENCHYMAL STEM CELLS IN RESPONSE TO INFLAMMATORY CYTOKINES: IMPLICATIONS FOR INTERVERTEBRAL DISC REGENERATIVE THERAPIES

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 3, Galway, Ireland, September 2018.



Abstract

Clinical trials are underway to elucidate a successful MSC-based therapy for the repair and regeneration of intervertebral disc (IVD) tissue. Currently, there is a lack of knowledge surrounding the relationship between naïve MSCs and the inflammatory microenvironment of the degenerate disc. To inform a phase II clinical trial, this study tests the hypothesis that cytokines, IL-1ß and TNFα regulate the expression of neuropeptides and neurotrophic factors from MSCs, thus exacerbating pain in those patients that have the presence of sensory nerve fibres within the IVD. Patient-matched MSCs derived from bone marrow (BM) or adipose (AD) tissue were stimulated with IL-1β (10ng/ml) or TNFα (10ng/ml) for 48 hours in either 21% or 5% O2. qRT-PCR was performed to assess expression of trophic factors involved in the survival or nerves (NGF & BDNF), blood vessels (VEGF) as well as pain related peptides (SP & CGRP) and inflammatory factors. Conditioned culture medium was analysed using ELISAs to identify secretion of soluble factors. IL-1β did not regulate neurotrophic factor expression from BM-MSCs under normoxic or hypoxic conditions. However, TNFα increased NGF, BDNF, SP and CGRP under normoxic conditions. In ADMSCs, VEGF was increased following IL-1β and TNFα stimulation; with TNFα also increasing NGF and CGRP under normoxic conditions. When exposed to hypoxia, the trophic effect of TNFα on human BM-MSCs was reduced. Overall this data suggests a role for priming or pre-stimulation of naïve MSCs prior to implantation to prevent exacerbation of pain from sensory nerve fibres.


Email: