header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DETERMINATION OF THE ROLE OF NEURONAL INTERLEUKIN-16 IN THE MECHANISM OF CALCIFICATION THAT OCCURS DURING PROGRESSION OF OSTEOARTHRITIS USING CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEAT

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 2, Galway, Ireland, September 2018.



Abstract

Osteoarthritis (OA) is a debilitating joint disease that severely affects elderly populations. At present there are no effective treatments for OA and mechanisms of disease progression are poorly understood. Previous work has identified that neuronal-Interleukin-16 (nIL-16) was significantly up-regulated in cartilage during the later stages of OA. Preliminary investigations identified co-localisation of nIL-16 with the Transient Receptor Potential cation ion-channel sub-Family-V-member-4 (TRPV4) in the primary cilium and the pericellular matrix of human OA chondrocytes. Perturbation of both TRPV4 and cilia are strongly associated with OA. We hypothesised that nIL-16 and TRPV4 work in tandem in a pathway that leads to chondrocyte hypertrophy and calcification that is seen in late OA and contributes to the loss of joint integrity. This makes it a promising target for development of a gene therapy to combat the disease. With the aim of elucidating the mechanism involved, nIl-16 knock-out cell lines generated using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system will be used to knock out nIl-16 PDZ domains to investigate whether this is the mechanism in which nIL-16 functions to anchor TRPV4 to the membrane of chondrocytes at the primary cilium. This work will be carried out using an immortalized hTERT mesenchymal stromal cell (MSC) cell line and effects on terminal MSC chondrogenesis, where hypertrophy mimics the process of calcification seen in OA, will be used to define functional effects of the knockout. Cell lines will be made using the RALA peptide (Phion Therapeutics), a bioinspired nanoparticle, for delivery the CRISPR/Cas9 system.


Email: