header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

CHARACTERIZATION OF LEPTIN RECEPTOR AS A TOOL TO STUDY SKELETAL STEM CELL CONTRIBUTIONS TO BONE MECHANOADAPTATION IN VIVO

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 2, Galway, Ireland, September 2018.



Abstract

Bone tissue experiences continued remodelling in response to changes in its biochemical and biophysical environment. Given the finite lifespan of osteoblasts, this continued bone formation requires replenishment from a progenitor population. Although this is largely believed to be from a skeletal stem cell population, given the limitation in in-vivo markers for this cell type, progress in demonstrating this mechanism is limited. Therefore, we characterized the LepR-Cre mouse strain and evaluated whether LepR positive cells are the progenitor population and if they contribute to the osteoblast population over time and in mechanically-induced bone formation in-vivo. Transgenic mouse strains; B6.129(Cg)-Leprtm2(cre)Rck/J to study LepR-expressing cells and B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J as a reporter strain were obtained from Jackson Laboratories. Characterization studies were performed on LepR:tdTomato mice at embryonic stage (19.5dpc), 8 and 12 weeks old. Mice (12 weeks old) were subjected to compressive tibia loading with a 11N peak load for 40 cycles, every other day for 2 weeks. Histological analysis reveal that LepR is expressed from the embryonic stage in various organs including bones. LepR positive cells are found around blood vessels and on bone surfaces. Flow cytometry analysis show the amount of LepR positive cells negative for CD45 and Ter-119 markers inside the bone marrow increases over time and following tibial loading. Mechanical loading induces an increase in bone mass and bone parameters. This model allows us to track and evaluate the role of LepR positive cells as bone forming cells, and to decipher the role of these cells in mechanically-induced bone formation.


Email: