header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

INFLUENCE OF THE MECHANICAL ENVIRONMENT IN HEALING LARGE BONE DEFECTS AND FRACTURES

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 2, Galway, Ireland, September 2018.



Abstract

The management of bone defects and impaired fracture healing remains one of the most challenging clinical problems. Several treatments exist to aid in the healing of large bone defects, including biologics such as recombinant human bone morphogenetic protein-2 (BMP-2), yet all have met with limited success. Regeneration of bone requires a coordinated network of molecular signals where the local mechanical environment plays a major role in the success of the healing process. The mechanical environment itself is determined by the stiffness of the implant used to stabilize the fracture and weight-bearing, and if fixation is either too flexible or too rigid the healing might fail. The hypothesis is that the healing of large-segmental bone defects and fractures can be accelerated by the imposition of an appropriate mechanical environment. An overview of the progress made in this research area on how the amount of rhBMP-2 could be reduced and its effectiveness increased by providing an optimized mechanical environment to achieve bone union will be presented. Additionally, the latest findings of improved fracture healing through the manipulation of fixation stability introducing a potential clinical strategy to improve the healing outcome of unstable fractures, particularly for non-unions through increased stabilization, will be discussed.


Email: