header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DESIGN OF NOVEL COMPOSITE BIOMATERIALS FOR BONE REGENERATION WITH SELF-HEALING AND LOAD-BEARING CAPACITY

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 1, Galway, Ireland, September 2018.



Abstract

Calcium phosphate ceramics and bioactive glasses are frequently used in orthopedic surgery to stimulate the regeneration of bone tissue due to their superior compatibility to bone tissue. Nevertheless, the brittleness and lack of self-healing behavior of bioceramics are still considered as serious drawbacks. Therefore, these bioceramics have been combined with organic biomaterials for several decades. Since the 1990s, the emergence of nanotechnology has accelerated the progress with respect to the development of organic-inorganic nanocomposites of improved functionality compared to conventional composite biomaterials. This presentation focuses on the development of injectable (nano)composites with self-healing and/or load-bearing capacity. To this end, the affinity between polymeric and inorganic components was tuned by modifying non-covalent interactions between both composite components. Specifically, we exploited reversible interactions between hydrogel matrices and inorganic nanoparticles (traditional nanocomposites), hydrogel nanoparticles and inorganic nanoparticles (colloidal nanocomposites), as well as fibers and bioceramic matrices (fiber-reinforced cement composites). The resulting composite biomaterials were mechanically strong and self-healing, which may open up new avenues of research on the applicability of self-healing and load-bearing composite biomaterials for regenerative medicine.


Email: