header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

Α MULTIFACTORIAL TOOLBOX TOWARDS TENOGENIC PHENOTYPE MAINTENANCE

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 1, Galway, Ireland, September 2018.



Abstract

Cellular therapies play an important role in tendon tissue engineering with tenocytes being described as the most prominent cell population if available in large numbers. In vitro expansion of tenocytes in standard culture leads to phenotypic drift and cellular senescence. Maintenance of tenogenic phenotype in vitro can be achieved by recapitulating different aspects of the tendon microenvironment. One approach used to modulate in vitro microenvironment and enhance extracellular matrix (ECM) deposition is macromolecular crowding (MMC). In addition, as tendon has been described to be a relatively avascular and hypoxic tissue and low oxygen tension can stimulate collagen synthesis and cross-linking through the activation of hypoxia-inducible factor 1-alpha (HIF1-α), we venture to assess the synergistic effect of MMC and low oxygen tension on human tenocyte phenotype maintenance. SDS-PAGE and immunocytochemistry analysis demonstrated that human tenocytes treated with MMC at 2 % oxygen tension showed increased synthesis and deposition of collagen type I. Moreover, immunocytochemistry for the tendon-specific ECM proteins collagen type III, V, VI and fibronectin illustrated enhanced deposition when cells were treated with MMC at 2 % oxygen tension. In addition, western blot analysis revealed increased expression of tendon-specific protein Scleraxis, while a detailed gene analysis illustrated upregulation of tendon-specific genes and downregulation of trans-differentiation genes again when cells cultured with MMC under hypoxic conditions. Collectively, results suggest that the synergistic effect of MMC and low oxygen tension can accelerate the formation of ECM-rich substitutes, which stimulates tenogenic phenotype maintenance.


Email: