header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SELF-SETTING AND INJECTABLE HYALURONIC ACID HYDROGELS WITH BIOINSPIRED PROPERTIES FOR SKELETAL TISSUE ENGINEERING

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 1, Galway, Ireland, September 2018.



Abstract

Tissue engineering is a promising approach to regenerate damaged skeletal tissues. In particular, the use of injectable hydrogels alleviates common issues of poor cell viability and engraftment. However, uncontrolled cell fate, resulting from unphysiological environments and degradation rates, still remain a hurdle and impedes tissue healing. We thus aim at developing a new platform of injectable hyaluronic acid (HA) hydrogels with a large panel of properties (stiffness, degradation…) matching those of skeletal tissues. Hence, HA with different molecular weights were functionalized with silylated moieties. Upon injection, these hydrogels formed through a sol-gel chemistry within 5 to 20 minutes in physiological conditions, as demonstrated by rheological characterization. By varying the crosslinking density and concentration, we obtained hydrogels spanning a large range of elastic moduli (E = 0.1–20 kPa), similar to those of native ECMs, with tunable biodegradation rates (from 24 hours to > 50 days) and swelling ratios (500 to 5000% (w/w)). Cell viability was confirmed by Live/Dead assays and will be completed by in vivo subcutaneous implantations in mice to study the foreign body reaction and degradation rate. We further developed hybrid HA/biphasic calcium phosphate granules hydrogels and demonstrated a strong mechanical reinforcement (E = 0.1 MPa) and a faster relaxation behaviour (τ1/2 < 400s), with similar degradation rates. Ongoing in vitro differentiation assays and in vivo implantations in a rabbit femur model will further assess their ability to drive bone regeneration. Collectively, these results suggest that this hydrogel platform offers promising outcomes for improved strategies in skeletal tissue engineering.


Email: