header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

LESSONS LEARNT FROM IMMOBILIZATION STUDY FOR IMPROVING THE USAGE OF MOBILE ACCELEROMETRY IN CLINICAL TRIALS

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 1, Galway, Ireland, September 2018.



Abstract

Lower limb fractures are commonly treated with cast immobilization, and as a main consequence of strict immobilization this typically leads to loss in muscle mass, decrease of bone density and decline in functional abilities. Body-worn sensors are increasingly used to assess outcome in clinical trials by providing objective mobility parameters in a real-world environment. The aim of this study is to investigate the usability aspects and potential changes in mobility parameters in partial-immobilization patients in real-world conditions. Six healthy young males (age 22.2 ± 1.2 years; weight 76.5 ± 6.7 kg, height 185.8 ± 6.1 cm. Mean ± standard deviation) wore a leg cylinder cast with walker boot to immobilize their dominant leg for two consecutive weeks. Subjects were asked to continuously wear a tri-axial accelerometer on the waist (actibelt) during waking hours for 6 weeks including 2 weeks before, during and after cast immobilisation. The total amount of days of continuous recording was 339 days with a total wearing time of 120 days. Software packages which allow to detect steps and to estimate real-world walking speed were used to analyse the accelerometry data. It was suspected that knee immobilization would affect strongly the wave form of the signal with an impact on the accuracy of the speed algorithm, whereas the step detection should be more robust. This effect was confirmed in a preliminary study performed to quantify the accuracy under immobilization conditions. On the other hand, step numbers are known to be sensitive to fluctuations in wearing time which was not uniform throughout the entire study. We concluded that in this setting step frequency is the most reliable parameter. Step frequency showed a systematic decrease in the values during the immobilization period which recovered to pre-immobilisation values after cast removal. This confirms the usability of accelerometry and sensitivity of its mobility parameters for clinical outcome assessment.


Email: