header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

Knee

Predicting implant size in total knee arthroplasty using demographic variables

linear regression and Bayesian modelling



Download PDF

Abstract

Aims

The purpose of this investigation was to determine the relationship between height, weight, and sex with implant size in total knee arthroplasty (TKA) using a multivariate linear regression model and a Bayesian model.

Methods

A retrospective review of an institutional registry was performed of primary TKAs performed between January 2005 and December 2016. Patient demographics including patient age, sex, height, weight, and body mass index (BMI) were obtained from registry and medical record review. In total, 8,100 primary TKAs were included. The mean age was 67.3 years (SD 9.5) with a mean BMI of 30.4 kg/m2 (SD 6.3). The TKAs were randomly split into a training cohort (n = 4,022) and a testing cohort (n = 4,078). A multivariate linear regression model was created on the training cohort and then applied to the testing cohort . A Bayesian model was created based on the frequencies of implant sizes in the training cohort. The model was then applied to the testing cohort to determine the accuracy of the model at 1%, 5%, and 10% tolerance of inaccuracy.

Results

Height had a relatively strong correlation with implant size (femoral component anteroposterior (AP) Pearson correlation coefficient (ρ) = 0.73, p < 0.001; tibial component mediolateral (ML) ρ = 0.77, p < 0.001). Weight had a moderately strong correlation with implant size, (femoral component AP ρ = 0.46, p < 0.001; tibial ML ρ = 0.48, p < 0.001). There was a significant linear correlation with height, weight, and sex with implant size (femoral component R2 = 0.607, p < 0.001; tibial R2 = 0.695, p < 0.001). The Bayesian model showed high accuracy in predicting the range of required implant sizes (94.4% for the femur and 96.6% for the tibia) accepting a 5% risk of inaccuracy.

Conclusion

Implant size was correlated with basic demographic variables including height, weight, and sex. The linear regression and Bayesian models accurately predicted required implant sizes across multiple manufacturers based on height, weight, and sex alone. These types of predictive models may help improve operating room and implant supply chain efficiency.

Level of Evidence: Level IV

Cite this article: Bone Joint J 2020;102-B(6 Supple A):85–90.


Correspondence should be sent to Jason L. Blevins. E-mail:

For access options please click here