header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

IMPLANT/SKELETAL CELL INTERFACE: HARNESSING IMPLANT TOPOGRAPHY TO IMPROVE OSSEOINTEGRATION

European Orthopaedic Research Society (EORS) 2015, Annual Conference, 2–4 September 2015. Part 1.



Abstract

Background

Following endosteal uncemented orthopaedic device implantation, the initial implant/bone interface retains spaces and deficiencies further exacerbated by pressure necrosis and resultant bone resorption. This implant-bone space requires native bone infill through the process of de novo osteogenesis. New appositional bone formation on the implant surface is known as contact osteogenesis and is generated by osteogenic cells, including skeletal stem cells (SSCs), colonising the implant surface and depositing the extracellular bone matrix. Surface nanotopographies provide physical cues capable of triggering SSC differentiation into osteoblasts, thus inducing contact osteogenesis, translated clinically into enhanced osseointegration and attainment of secondary stability. The current study has investigated the in vitro and in vivo effects of unique nanotopographical pillar substrates on SSC phenotype and function.

Methods

Adult human SSCs were immunoselected, enriched using STRO-1 antibody and cultured on control and test surfaces for 21 days in vitro. The test groups comprised Ti-coated substrates with planar or modified surfaces with nanopillar. Osteoinductive potential was analysed using qPCR and immunostaining to examine gene expression and protein synthesis.

Results

Following in vitro (n=5) culture on nanopillars, the expression of osteogenic genes (ALP, Collagen 1, OPN and OCN) and of Osteopontin protein (a bone matrix protein), on Ti pillars were both significantly enhanced when compared to control or Ti planar surfaces.

Conclusions

Discrete raised surface nanopillars modulate adult SSC populations in the absence of any chemical cues and enhance their osteogenic properties, an effect not observed on planar Ti constructs. Hence, these findings herald exciting opportunities to improve the implant surface design, implant osseointegration, and, ultimately, implant survival.

Level of evidence

Original experimental study.