header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

COMPARISON OF WEAR IN HIGHLY CROSS-LINKED AND CONVENTIONAL POLYETHYLENE HIP RETRIEVALS

The International Society for Technology in Arthroplasty (ISTA), 29th Annual Congress, October 2016. PART 2.



Abstract

Introduction

Highly cross-linked (HXL) polyethylene has demonstrated clinical advantages as a wear resistant acetabular bearing material in total hip arthroplasty (THA) [1]. In vitro wear testing has predicted a tenfold reduction in the wear rate of HXL polyethylene, as compared to its conventional, non-HXL counterpart [2]. To date, radiographic studies of head penetration represent the state-of-the-art in determining clinical wear of polyethylene hip liners [3]. However, as the amount of wear drops to very low levels, it becomes important to develop a precise and reliable method for measuring wear, facilitating a comparison of clinical results to expectations.

This study focuses on locating and quantifying the maximum linear wear of retrieved acetabular poly liners using a coordinate measuring machine (CMM). Specifically, HXL liners are compared to a baseline of conventional, non-HXL bearings.

Methods

An IRB-approved retrieval laboratory received 63 HXL acetabular bearing retrievals from 5 manufacturers with in vivo durations of 1.01–14.85 years. These were compared with 32 conventional, non-HXL controls (including gas plasma, gamma-barrier and EtO) from 3 manufacturers with in vivo durations of 1.03–20.89 years.

Liners were mounted in a tripod of axial contacts with the liner face positioned in a vertical plane. Each bearing was scanned with a CMM dual-probe head, with one horizontal probe scanning the articular surface and the other scanning the non-articular, sequentially. Surface-normal wall thickness values along each latitude were calculated using a custom developed algorithm (Figure 1). Because the liners are axially symmetric as manufactured, deviation in wall thickness at a given latitude represents linear wear [4].

Results

Total wear penetration for the HXL liners ranged from 0.02 to 1.03 mm, and for the conventional, non-HXL controls ranged from 0.07 to 6.85 mm. The HXL liners had an average linear wear rate of 0.02 mm/year, compared to 0.20 mm/year for the conventional, non-HXL controls (Figure 2). The direction of maximum wear, as measured in degrees from the cup pole, ranged from 8.32 to 73.86 degrees. Differences in wear rates as a function of crosslinking dose, as well as presence/absence of a lip can be identified.

Discussion

This wear measurement study of retrievals is the first application of a novel CMM technique to locate and quantify wear in HXL liners compared to conventional polyethylene controls. The study confirms the expectations of a tenfold reduction in wear rates that were based on in vitro testing [2]. The results are consistent with those of radiographic studies that have documented lower wear of HXL polyethylene in the hip compared to conventional polyethylene [3]. However, the current technique offers higher precision and reliability, and eliminates the large proportion of negative wear measurements common amongst radiographic methods. A sufficient number of liners have been measured to begin to differentiate wear between different radiation doses.


Email: