header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

BIOMECHANICAL ANALYSIS OF KNEE BRACING IN SUBJECTS WITH KNEE OSTEOARTHRITIS

European Orthopaedic Research Society (EORS) 2016, 24th Annual Meeting, 14–16 September 2016. Part 1.



Abstract

Valgus unloader knee braces are a conservative treatment option for medial compartment knee osteoarthritis (OA). These braces are designed to reduce painful, and potentially injurious compressive loading on the damaged medial side of the joint through application of a frontal-plane abduction moment. While some patients experience improvements in pain, function, and joint loading, others see little to no benefit from bracing [1]. Previous biomechanical studies investigating the mechanical effectiveness of bracing have been limited in either their musculoskeletal detail [2] or incorporation of altered external joint moments and forces [3]. The first objective was to model the relative contributions of gait dynamics, muscle forces, and the external brace abduction moment to reducing medial compartment knee loads. The second objective was to determine what factors predict the effectiveness of the valgus unloading brace.

Seventeen people with knee OA (8 Female age 54.4 +/− 4.2, BMI 30.00 +/− 4.0 kg/m2, Kellgren-Lawrence range of 1–4 with med. = 3) and 20 healthy age-matched controls participated in this study which was approved by the institutional ethics review board. Subjects walked across a 20m walkway with and without a Donjoy OA Assist knee brace while marker trajectories, ground reaction forces, and lower limb electromyography were recorded. The external moment applied by the brace was estimated by multiplying the brace deformation by is pre-determined brace-stiffness. For each subject, a representative stride was selected for each brace condition. A generic musculokeletal model with two legs, a torso, and 96 muscles was modified to include subject-specific frontal plane alignment and medial and lateral contact locations [4]. Muscle forces, and tibiofemoral contact forces were estimated using static optimization [4]. We defined brace effectiveness as the difference in the peak medial contact force between the braced and the unbraced conditions. A stepwise regression analysis was performed to predict brace effectiveness based on: X-ray frontal plane alignment, medial joint space, KL grade, mass, WOMAC scores, unbraced walking speed, trunk, hip and knee joint angles and moments.

The OA Assist brace reduced medial joint loading by approximately 0.1 to 0.2 BW or roughly 10%, during stance. This decrease was primarily due to the external brace abduction moment, and not changes in gait dynamics, or muscle forces. The brace effectiveness could be predicted (R2=0.77) by the KL grade, and the magnitude of the hip adduction moment in early stance (unbraced). The brace was more effective for those that had larger hip adduction moments and for those with more severe OA.

The valgus knee brace was found to reduce the medial joint contact force by approximately 10% as estimated using a musculoskeletal model. Bracing resulted in a greater reduction in joint contact force for those who had more severe OA while still maintaining a hip adduction moment similar to that of healthy controls.