header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

OSTEOPOROSIS AND AGEING AFFECTS STEM CELL DIFFERENTIATION AND MIGRATION

The British Orthopaedic Research Society (BORS) Annual Conference, September 2016



Abstract

There is increasing interest in using anabolic factors such as stem cells to augment fragility fracture repair. One of the factors associated with fracture healing is the retention and migration of stem cells to the site of injury (1–3). The aim of this study was to isolate stem cells from osteopenic rats and investigate and compare the CD marker expression, proliferation, migration, osteogenic and adipogenic differentiation. The hypothesis of this study is that the migration of MSCs from young, adult and ovariectomised (OVX) rats will have different proliferation, differentiation and migratory abilities.

CD marker expression of MSCs from young, adult and osteopenic rats was measured using flow cytometry. Proliferation, osteogenic differentiation and adipogenic differentiation was measured using Alamar Blue, ALP expression and Alizari n Red and quantitative Oil red O respectively. Cells were incubated in Boyden chambers to quantify their migration towards SDF1. Data was analysed using a Student t-test where p values < 0.05 were considered significant.

MSCs from all 3 groups of rats had similar proliferation and expression of CD29(>90%), CD90(>96%), CD34(<5%) and CD45(approx 10%). The proliferation rate was also similar. However, interestingly the migration and differentiation ability was significantly different between the MSCs from the 3 groups of rats. The young MSCs were not only better at differentiating into bone and fat, but they also migrated significantly more towards SDF1. MSCs from OVX rats are similar to MSCs from young rats. However when induced to turn into bone, fat and migrate towards SDF1, young MSCs are significantly more responsive than MSCs from OVX and adult control rats. The poor homing ability and differentiation of the stem cells and their retention may result in a reduction in bone formation leading to delayed union in fractures of osteoporotic patients(4).