header advert
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1164 - 1171
1 Sep 2008
Ochs BG Schmid U Rieth J Ateschrang A Weise K Ochs U

Deficiencies of acetabular bone stock at revision hip replacement were reconstructed with two different types of allograft using impaction bone grafting and a Burch-Schneider reinforcement ring. We compared a standard frozen non-irradiated bone bank allograft (group A) with a freeze-dried irradiated bone allograft, vitalised with autologous marrow (group B). We studied 78 patients (79 hips), of whom 87% (69 hips) had type III acetabular defects according to the American Academy of Orthopaedic Surgeons classification at a mean of 31.4 months (14 to 51) after surgery. At the latest follow-up, the mean Harris hip score was 69.9 points (13.5 to 97.1) in group A and 71.0 points (11.5 to 96.5) in group B. Each hip showed evidence of trabeculation and incorporation of the allograft with no acetabular loosening.

These results suggest that the use of an acetabular reinforcement ring and a living composite of sterile allograft and autologous marrow appears to be a method of reconstructing acetabular deficiencies which gives comparable results to current forms of treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 426 - 432
1 Mar 2005
Mueller CA Eingartner C Schreitmueller E Rupp S Goldhahn J Schuler F Weise K Pfister U Suedkamp NP

The treatment of fractures of the proximal tibia is complex and makes great demands on the implants used. Our study aimed to identify what levels of primary stability could be achieved with various forms of osteosynthesis in the treatment of diaphyseal fractures of the proximal tibia. Pairs of human tibiae were investigated. An unstable fracture was simulated by creating a defect at the metaphyseal-diaphyseal junction. Six implants were tested in a uniaxial testing device (Instron) using the quasi-static and displacement-controlled modes and the force-displacement curve was recorded. The movements of each fragment and of the implant were recorded video-optically (MacReflex, Qualysis). Axial deviations were evaluated at 300 N.

The results show that the nailing systems tolerated the highest forces. The lowest axial deviations in varus and valgus were also found for the nailing systems; the highest axial deviations were recorded for the buttress plate and the less invasive stabilising system (LISS). In terms of rotational displacement the LISS was better than the buttress plate.

In summary, it was found that higher loads were better tolerated by centrally placed load carriers than by eccentrically placed ones. In the case of the latter, it appears advantageous to use additive procedures for medial buttressing in the early phase.