header advert
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1582 - 1587
1 Nov 2015
Suzuki T Seki A Nakamura T Ikegami H Takayama S Nakamura M Matsumoto M Sato K

This retrospective study was designed to evaluate the outcomes of re-dislocation of the radial head after corrective osteotomy for chronic dislocation. A total of 12 children with a mean age of 11 years (5 to 16), with further dislocation of the radial head after corrective osteotomy of the forearm, were followed for a mean of five years (2 to 10). Re-operations were performed for radial head re-dislocation in six children, while the other six did not undergo re-operation (‘non-re-operation group’). The active range of movement (ROM) of their elbows was evaluated before and after the first operation, and at the most recent follow-up.

In the re-operation group, there were significant decreases in extension, pronation, and supination when comparing the ROM following the corrective osteotomy and following re-operation (p < 0.05).

The children who had not undergone re-operation achieved a better ROM than those who had undergone re-operation.

There was a significant difference in mean pronation (76° vs 0°) between the non- re-operation and the re-operation group (p = 0.002), and a trend towards increases in mean flexion (133° vs 111°), extension (0° vs 23°), and supination (62° vs 29°). We did not find a clear benefit for re-operation in children with a re-dislocation following corrective osteotomy for chronic dislocation of the radial head.

Cite this article: Bone Joint J 2015;97-B:1582–7.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 789 - 794
1 Jun 2014
Sukegawa K Kuniyoshi K Suzuki T Ogawa Y Okamoto S Shibayama M Kobayashi T Takahashi K

We conducted an anatomical study to determine the best technique for transfer of the anterior interosseous nerve (AIN) for the treatment of proximal ulnar nerve injuries. The AIN, ulnar nerve, and associated branches were dissected in 24 cadaver arms. The number of branches of the AIN and length available for transfer were measured. The nerve was divided just proximal to its termination in pronator quadratus and transferred to the ulnar nerve through the shortest available route. Separation of the deep and superficial branches of the ulnar nerve by blunt dissection alone, was also assessed. The mean number of AIN branches was 4.8 (3 to 8) and the mean length of the nerve available for transfer was 72 mm (41 to 106). The transferred nerve reached the ulnar nerve most distally when placed dorsal to flexor digitorum profundus (FDP). We therefore conclude that the AIN should be passed dorsal to FDP, and that the deep and superficial branches of the ulnar nerve require approximately 30 mm of blunt dissection and 20 mm of sharp dissection from the point of bifurcation to the site of the anastomosis.

The use of this technique for transfer of the AIN should improve the outcome for patients with proximal ulnar nerve injuries.

Cite this article: Bone Joint J 2014;96-B:789–94.