header advert
Results 1 - 3 of 3
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 11 | Pages 1556 - 1561
1 Nov 2011
Singhal R Perry DC Khan FN Cohen D Stevenson HL James LA Sampath JS Bruce CE

Clinical prediction algorithms are used to differentiate transient synovitis from septic arthritis. These algorithms typically include the erythrocyte sedimentation rate (ESR), although in clinical practice measurement of the C-reactive protein (CRP) has largely replaced the ESR. We evaluated the use of CRP in a predictive algorithm.

The records of 311 children with an effusion of the hip, which was confirmed on ultrasound, were reviewed (mean age 5.3 years (0.2 to 15.1)). Of these, 269 resolved without intervention and without long-term sequelae and were considered to have had transient synovitis. The remaining 42 underwent arthrotomy because of suspicion of septic arthritis. Infection was confirmed in 29 (18 had micro-organisms isolated and 11 had a high synovial fluid white cell count). In the remaining 13 no evidence of infection was found and they were also considered to have had transient synovitis. In total 29 hips were categorised as septic arthritis and 282 as transient synovitis. The temperature, weight-bearing status, peripheral white blood cell count and CRP was reviewed in each patient.

A CRP > 20 mg/l was the strongest independent risk factor for septic arthritis (odds ratio 81.9, p < 0.001). A multivariable prediction model revealed that only two determinants (weight-bearing status and CRP > 20 mg/l) were independent in differentiating septic arthritis from transient synovitis. Individuals with neither predictor had a < 1% probability of septic arthritis, but those with both had a 74% probability of septic arthritis. A two-variable algorithm can therefore quantify the risk of septic arthritis, and is an excellent negative predictor.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 4 | Pages 484 - 489
1 May 2003
Helm AT Karski MT Parsons SJ Sampath JS Bale RS

We prospectively audited 79 patients undergoing primary knee or hip arthroplasty (38 knees, 41 hips) and found that 66% (58% of knees, 73% of hips) had at least one unit of blood transfused postoperatively, with a mean transfusion requirement of 1.3 units per patient (1.1 for knees, 0 to 6; 1.5 for hips, 0 to 4).

We then established a new protocol for postoperative blood transfusion. This requires the calculation of the maximum allowable blood loss (MABL) that each individual patient can safely lose based upon their weight and preoperative haematocrit. The total blood loss up to this volume is replaced with colloid. When a patient’s total blood loss reaches their MABL their haematocrit is measured at the bedside using the Microspin system (Bayer plc, Newbury, UK). If their haematocrit is low (< 0.30 for men, < 0.27 for women), blood is transfused. As a safety net all patients have their haemoglobin formally checked on days 1, 2, and 3 after surgery and have a transfusion if the haemoglobin levels are less than 8.5 g/dl.

We conducted a further audit of 82 patients (35 knees, 47 hips) after the introduction of this protocol. Under the new protocol only 24% of patients required blood (11% of knees, 34% of hips) with a mean transfusion requirement of 0.56 units per patient (0.26 for knees, 0 to 4; 0.79 for hips, 0 to 4).

The use of clinical audit and the introduction of strict guidelines for transfusion can change transfusion practice and result in improved patient care. Our transfusion protocol is a simple and effective method of keeping transfusion to a minimum and is particularly useful in departments which do not have the facility to use autologous blood or reinfusion drains for elective orthopaedic surgery.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 4 | Pages 619 - 619
1 May 2000
SAMPATH JS PATON RW