header advert
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 3, Issue 6 | Pages 470 - 474
7 Jun 2022
Baek J Lee SC Ryu S Kim J Nam CH

Aims

The purpose of this study was to compare the clinical outcomes, mortalities, implant survival rates, and complications of total knee arthroplasty (TKA) in patients with or without hepatitis B virus (HBV) infection over at least ten years of follow-up.

Methods

From January 2008 to December 2010, 266 TKAs were performed in 169 patients with HBV (HBV group). A total of 169 propensity score–matched patients without HBV were chosen for the control group in a one-to-one ratio. Then, the clinical outcomes, mortalities, implant survival rates, and complications of TKA in the two groups were compared. The mean follow-up periods were 11.7 years (10.5 to 13.4) in the HBV group and 11.8 years (11.5 to 12.4) in the control group.


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 993 - 1000
1 Jul 2013
Lee SC Shim JS Seo SW Lim KS Ko KR

We compared the accuracy of the growth remaining method of assessing leg-length discrepancy (LLD) with the straight-line graph method, the multiplier method and their variants. We retrospectively reviewed the records of 44 patients treated by percutaneous epiphysiodesis for LLD. All were followed up until maturity. We used the modified Green–Anderson growth-remaining method (Method 1) to plan the timing of epiphysiodesis. Then we presumed that the other four methods described below were used pre-operatively for calculating the timing of epiphysiodesis. We then assumed that these four methods were used pre-operatively. Method 2 was the original Green–Anderson growth-remaining method; Method 3, Paley’s multiplier method using bone age; Method 4, Paley’s multiplier method using chronological age; and Method 5, Moseley’s straight-line graph method. We compared ‘Expected LLD at maturity with surgery’ with ‘Final LLD at maturity with surgery’ for each method. Statistical analysis revealed that ‘Expected LLD at maturity with surgery’ was significantly different from ‘Final LLD at maturity with surgery’. Method 2 was the most accurate. There was a significant correlation between ‘Expected LLD at maturity with surgery’ and ‘Final LLD at maturity with surgery’, the greatest correlation being with Method 2. Generally all the methods generated an overcorrected value. No method generates the precise ‘Expected LLD at maturity with surgery’. It is essential that an analysis of the pattern of growth is taken into account when predicting final LLD. As many additional data as possible are required.

Cite this article: Bone Joint J 2013;95-B:993–1000.