header advert
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 3, Issue 11 | Pages 317 - 320
1 Nov 2014
Basso T Klaksvik J Foss OA

Objective

In ex vivo hip fracture studies femoral pairs are split to create two comparable test groups. When more than two groups are required, or if paired femurs cannot be obtained, group allocation according to bone mineral density (BMD) is sometimes performed. In this statistical experiment we explore how this affects experimental results and sample size considerations.

Methods

In a hip fracture experiment, nine pairs of human cadaver femurs were tested in a paired study design. The femurs were then re-matched according to BMD, creating two new test groups. Intra-pair variance and paired correlations in fixation stability were calculated. A hypothetical power analysis was then performed to explore the required sample size for the two types of group allocation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs.

The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems.

Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur.

The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.